Angewandte Chemie International Edition
10.1002/anie.201906633
COMMUNICATION
shown in E provides the observed relative stereochemistry in the
Both X-ray structural characterization of the products and
mechanistic experiments support the proposed mechanism.
final product for both the internally monosubstituted (Table 2) and
1,2-disubstituted (Table 3) dienes. Release of product F upon
protonolysis regenerates the cobalt catalyst.
Acknowledgements
This work was supported by the NIH (R35GM122473). We gratefully
acknowledge Dr. Brandon Mercado (Yale University) for solving the crystal
structures reported in this manuscript. Helpful input provided by Jeffrey Boerth
and Soham Maity is greatly appreciated.
Keywords: C–H activation • homogeneous catalysis • multicomponent
reactions • cobalt • diastereoselectivity
[
1]
Selected reviews on transition metal-catalyzed C–H bond
funtionalization: (a) L. Woźniak, N. Cramer, Trends in Chem. 2019,
https://doi.org/10.1016/j.trechm.2019.03.013; (b) P. Gandeepan, T.
Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem.
Rev. 2019, 119, 2192–2452; (c) D. -S. Kim, W. -J. Park, C. -Ho. Jun,
Chem. Rev. 2017, 117, 8977-9015; (d) J. R. Hummel, J. A. Boerth, J. A.
Ellman, Chem. Rev. 2017, 117, 9163-9227; (e) T. Gensch, M. N.
Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45,
2900-2936; (f) L. Yang, H. Huang, Chem. Rev. 2015, 115, 3468-3517;
Figure 2. Mechanistic experiments with deuterium labeled coupling partners.
(
g) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-375; (h) J.
Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51,
960–9009; Angew. Chem. 2012, 124, 9092-9142.
8
[
2]
(a) R. Li, C. -W. Ju, D. Zhao, Chem. Commun. 2019, 55, 695-698; (b) M.
Tang, Y. Li, S. Han, L. Liu, L. Ackermann, J. Li, Eur. J. Org. Chem. 2019,
660-664; (c) J. A. Boerth, S. Maity, S. K. Williams, B. Q. Mercado, J. A.
Ellman, Nat. Catal. 2018, 1, 673-679; (d) J. A. Boerth, J. A. Ellman,
Angew. Chem. Int. Ed. 2017, 56, 9976-9980; Angew. Chem. 2017, 129,
10108-10112; (e) S.-S. Zhang, J., Xia, J.-Q. Wu, X.-G. Liu, C.-J. Zhou,
E. Lin, Q. Li, S.-L. Huang, H. Wang, Org. Lett. 2017, 19, 5868-5871; (f)
J. A. Boerth, J. R. Hummel, J. A. Ellman, Angew. Chem. Int. Ed. 2016,
55, 12650-12654; Angew. Chem. 2016,128, 12840-12844; (g) J. A.
Boerth, J. A. Ellman, Chem. Sci. 2016, 7, 1474.
[
[
3]
4]
A three-component approach initiated by Pd-catalyzed C-I oxidative
addition followed by C−H functionalization: Ye, J., Lautens, M., Nat.
Chem. 2015, 7, 863.
III
Selected reviews on Co -catalyzed C–H bond functionalization: (a) O.
Planas, P. G. Chirila, C. J. Whiteoak, X. Ribas, Adv. Organomet. Chem.
2018, 69, 209-282; (b) R. Santhoshkumar, C-. H. Cheng, Beilstein J. Org
Chem. 2018, 14, 2266-2288; (c) S. Yoshino, S. Matsunaga, Adv. Synth.
Catal. 2017, 359, 1245-1262; (d) M. Moselage, J. Li, L. Ackermann, ACS.
Catal. 2016, 6, 498-525; (e) D. Wei, X. Zhu, J.-L. Niu, M. P. Song, Chem.
Cat. Chem. 2016, 8, 1242-1262; (c) N. Yoshikai, Chem. Cat. Chem. 2015,
7, 732-734.
[
5]
Selected reviews on stereogenic quaternary carbon centers: (a) I. Marek,
Int.
Ed.
2019,
Angew.
Chem.
2019
Figure 3. Proposed mechanism for the three-component transformation.
B. M. Stoltz, Acc. Chem. Res. 2015, 48, 740-751; (b) I. Marek, Y. Minko,
M. Pasco, T. Mejuch, N. Gilboa, H. Chechik, J. P. Das, J. Am. Chem.
Soc. 2014, 136, 2682-2694; (c) K. W. Quasdorf, L. E. Overman, Nature
III
In summary, a Co -catalyzed C–H bond addition to form
secondary and tertiary homoallylic alcohols containing quaternary
carbons has been developed. The sequential C–H bond addition
to internally substituted dienes and carbonyls shows broad scope,
including not only alkyl and aryl aldehydes but also the first
examples of additions to activated ketones for the formation of
tertiary homoallylic alcohols. Additionally, this robust
transformation proceeds with high diastereoselectivity for various
internally monosubstituted dienes. Notably, with the first
application of 1,2-disubstituted dienes, the opposite relative
stereochemistry of the two stereogenic centers can be achieved.
2
014, 516, 181-191.
[
6]
Recent examples of syntheses of homoallylic alcohols vicinal to acyclic
quaternary centers: (a) Y. Xiong, G. Zhang, Org. Lett. 2016, 18, 5094-
5097; (b) K. D. Nguyen, D. Herkommer, M. J. Krische, J. Am. Chem. Soc.,
2016, 138, 14210-14213; (c) B. Sam, T. Luong, M. J. Krische, Angew.
Chem. Int. Ed. 2015, 54, 5465–5469; Angew. Chem. 2015, 127, 5555–
5
559; (d) R. Vabre, B. Island, C. J. Diehl, P. R. Schreiner, I. Marek,
Angew. Chem. Int. Ed. 2015, 54, 9996-9999; Angew. Chem.
015,127,10134-10137; (e) R. Alam, T. Vollgraff, L. Eriksson, K. J.
2
Szabó, J. Am. Chem. Soc. 2015, 137, 11262-11265; (f) L. T. Kliman, S.
N. Mlynarski, G. E. Ferris, J. P. Morken, Angew. Chem. Int. Ed. 2012, 51,
This article is protected by copyright. All rights reserved.