ACS Catalysis
Page 6 of 7
Organic Iodides as Initiators:ꢀ Mechanism and Application. J. Am.
Interelement Bond: Mechanism, Catalysis, and Synthesis. Chem. Rev.
2013, 113, 402-441.
(8) O’Brien, J. M.; Hoveyda, A. H., Metal-Free Catalytic C–Si Bond
Formation in an Aqueous Medium. Enantioselective NHC-Catalyzed
Silyl Conjugate Additions to Cyclic and Acyclic α, β-Unsaturated
Carbonyls. J. Am. Chem. Soc. 2011, 133, 7712-7715.
(9) (a) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. Copper-Catalyzed
Enantioselective Conjugate Addition of Dialkylzinc Reagents to
(2-Pyridyl)sulfonyl Imines of Chalcones. J. Org. Chem. 2005, 70,
7451-7454; (b) Westmeier, J.; Zezschwitz, P. V. Copper-catalyzed
enantioselective 1,4-addition of alkyl groups to N-sulfonyl imines.
Chem. Commun. 2014, 50, 15897-15900; (c) Gebhardt, S.; Müller, C.
H.; Westmeier, J.; Harms, K.; Zezschwitz, P. V. Enantioselective
Preparation of 3‐Arylcycloalkylamines by Rhodium‐Catalyzed
1,4 ‐ Addition and Subsequent Stereodivergent Reduction. Adv.
Synth. Catal. 2015, 357, 507-514.
Chem. Soc. 2005, 127, 126-131; (h) Ohmura, T.; Suginome, M.;
Asymmetric Silaboration of Terminal Allenes Bearing α-Stereogenic
Centers:ꢀ Stereoselection Based on “Reagent Control”. Org. Lett. 2006,
8, 2503-2506; (i) Ohmura, T.; Taniguchi, H.; Suginome, M.
Palladium-Catalyzed Asymmetric Silaboration of Allenes. J. Am.
Chem. Soc. 2006, 128, 13682-13683; (j) Abe, Y.; Kuramoto, K.; Ehara,
M.; Nakatsuji, H.; Suginome, M.; Murakami, M.; Ito, Y. A Mechanism
for the Palladium-Catalyzed Regioselective Silaboration of Allene: A
Theoretical Study. Organometallics 2008, 27, 1736-1742; (k) Miller, Z.
D.; Li, W.; Belderrain, T. R.; Montgomery, J. Regioselective Allene
Hydrosilylation Catalyzed by N-Heterocyclic Carbene Complexes of
Nickel and Palladium. J. Am. Chem. Soc. 2013, 135, 15282-15285; (l)
Tafazolian, H.; Schmidt , J. A. R.; Highly efficient regioselective
hydrosilylation of allenes using a [(3η)Pd(allyl)]OTf catalyst; first
example of allene hydrosilylation with phenyl- and diphenylsilane.
Chem. Commun. 2015, 51, 5943-5946.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) McMahon, J. P.; Ellman, J. A. Asymmetric Conjugate Addition of
Copper Reagents to α, β-Unsaturated tert-Butanesulfinyl Imines.
Org. Lett. 2005, 7, 5393-5396.
(4) (a) Shimizu, M.; Kurahashi, T.; Hiyama,T. Novel Synthesis of
2,3-Bisboryl-1,3-dienes
from
1-Bromo-1-lithioethene
and
1,1-Bisborylalkenes. Synlett 2001, 1006-1008; (b) Gerdin, M.; Moberg,
C. Enantioselective Platinum‐Catalyzed Silicon‐Boron Addition to
1,3 ‐Cyclohexadiene. Adv. Synth. Catal. 2005, 347, 749-753; (c)
Durieux, G.; Gerdin, M.; Moberg, C.; Jutand, A. Rate and Mechanism
(11) (a) Lee, A.; Ahn, S.; Kang, K.; Seo, M.-S.; Kim, Y.; Kim, W. Y.;
Kim, H. Bicyclic Bridgehead Phosphoramidite (Briphos) Ligands
with Tunable π-Acceptor Ability and Catalytic Activity in the
Rhodium-Catalyzed Conjugate Additions. Org. Lett. 2014, 16,
5490-5493; (b) Lee, A.; Kim, H. Rhodium-Catalyzed Asymmetric
1,4-Addition of α, β-Unsaturated Imino Esters Using Chiral Bicyclic
Bridgehead Phosphoramidite Ligands. J. Am. Chem. Soc. 2015, 137,
11250-11253; (c) Lee, A.; Kim, H. Chiral Bicyclic Bridgehead
of the Oxidative Addition of
a
Silylborane to Pt0
Complexes-Mechanism for the Pt‐Catalyzed Silaboration of 1, 3‐
Cyclohexadiene. Eur. J. Inorg. Chem. 2008, 4236-4241.
(5) (a) Ohmiya, H.; Ito, H.; Ito, M. General and Functional
Group-Tolerable Approach to Allenylsilanes by Rhodium-Catalyzed
Coupling between Propargylic Carbonates and a Silylboronate. Org.
Lett. 2009, 11, 5618-5620; (b) Vyas, D. J.; Oestreich, M. Copper‐
Catalyzed SiB Bond Activation in Branched ‐ Selective Allylic
Substitution of Linear Allylic Chlorides. Angew. Chem., Int. Ed. 2010,
49, 8513-8515; (c) Vyas, D. J.; Oestreich, M. Expedient access to
branched allylic silanes by copper-catalysed allylic substitution of
linear allylic halides. Chem. Commun. 2010, 46, 568-570; (d) Ito, H.;
Horita, Y.; Sawamura, M. Copper(I)‐Catalyzed Allylic Substitution
of Silyl Nucleophiles through SiSi Bond Activation. Adv. Synth.
Catal. 2012, 354, 813-817; (e) Delvos, L. B.; Vyas, D. J.; Oestreich, M.
Phosphoramidite
(Briphos)
Ligands
for
Asymmetric
Rhodium-Catalyzed 1,2- and 1,4-Addition. J. Org. Chem. 2016, 81,
3520-3527.
(12) Espinosa, M.; Blay, G.; Cardona, L.; Pedro, J. R. Asymmetric
Conjugate Addition of Malonate Esters to α, β-Unsaturated N-
Sulfonyl Imines: An Expeditious Route to Chiral δ-Aminoesters and
Piperidones. Chem. Eur. J. 2013, 19, 14861-14866.
(13) (a) Vicario, J.; Aparicio, D.; Palacios, F. J. Org. Chem. 2009, 74,
452-455; (b) Huang, Y. H.; Chew, R. J., Pullarkat, S. A.; Li, Y. X.;
Leung, P. H. J. Org. Chem. 2012, 77, 6849-6854; (c) Sole, C.; Bonet, A.;
Vries, A. H. M. de; Vries, J. G. de; Lefort, L.; Gulyás, H.; Fernández, E.
Organometallics 2012, 31, 7855-7861.
Asymmetric
Synthesis
of
α-Chiral
Allylic
Silanes
by
(14) (a) Wang, M.; Liu, Z.-L.; Zhang, X.; Tian, P.-P.; Xu, Y.-H.; Loh,
T.-P. Synthesis of Highly Substituted Non-enantioselective and
Enantioenriched Allenylsilanes via Copper-Catalyzed Hydrosilylation
of (Z)-2-Alken-4-ynoates with Silylboronate. J. Am. Chem. Soc. 2015,
137, 14830-14833; (b) Huang, Z.-D.; Ding, R.; Wang, P.; Xu, Y.-H.; Loh,
T.-P. Palladium-catalyzed silylation reaction between benzylic
halides and silylboronate. Chem. Commun. 2016, 52, 5609-5612; (c)
Chang, X.-H.; Liu, Z.-L.; Luo, Y.-C.; Yang, C.; Liu, X.-W.; Da, B.-C.; Li,
J.-J.; Ahmad, T.; Loh, T.-P.; Xu, Y.-H. Copper-catalyzed silylation
reactions of propargyl epoxides: easy access to 2,3-allenols and
stereodefined alkenes. Chem. Commun. 2017, 53, 9344-9347; (d)
Zhang, Q.; Liang, Q.–J.; Xu, J.-L; Xu, Y.-H.; Loh, T.-P.
Palladium-catalyzed silaborative carbocyclizations of 1,6-diynes.
Chem. Commun. 2018, 54, 2357-2360.
(15) (a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete Field
Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and
Metal Catalysis: History and Classification by Mode of Activation;
Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal
Phosphates. Chem. Rev. 2014, 114, 9047-9153; (b) Maji, R.; Mallojjala,
S. C.; Wheeler, S. E. Chiral phosphoric acid catalysis: from numbers
to insights. Chem. Soc. Rev. 2018, 47, 1142-1158.
(16) (a) Fernandez-Perez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran,
A. Phosphine−Phosphinite and Phosphine−Phosphite Ligands:
Preparation and Applications in Asymmetric Catalysi. Chem. Rev.
2011, 111, 2119-2176; (b) Li, W. B.; Zhang, J. L. Recent developments in
the synthesis and utilization of chiral β-aminophosphine derivatives
as catalysts or ligands. Chem. Soc. Rev. 2016, 45, 1657-1677.
(17) (a) Menon, R. S.; Biju, A. T.; Nair, V. Recent advances in
employing homoenolates generated by N-heterocyclic carbene
(NHC) catalysis in carbon–carbon bond-forming reactions. Chem.
Soc. Rev. 2015, 44, 5040-5052; (b) Janssen-Müller, D.; Schlepphorst,
C.; Glorius, F. Privileged chiral N-heterocyclic carbene ligands for
Enantioconvergent γ-Selective Copper(I) ‐ Catalyzed Allylic
Silylation. Angew. Chem. Int. Ed. 2013, 52, 4650-4653; (f) Hensel, A.;
Oestreich, M. Asymmetric Catalysis with Silicon‐Based Cuprates:
Enantio ‐ and Regioselective Allylic Substitution of Linear
Precursors. Chem. Eur. J. 2015, 21, 9062-9065.
(6) (a) Suginome, M.; Nakamura, H.; Ito, Y. Regio- and
stereo-selective silaboration of alkynes catalysed by palladium and
platinum complexes. Chem. Commun. 1996, 2777-2778; (b)
Suginome, M.; Matsuda, T.; Ito, Y. Convenient Preparation of
Silylboranes. Organometallics 2000, 19, 4647-4649.
(7) (a) Matsumoto, Y.; Hayashi, T. Catalytic asymmetric synthesis of
β-hydroxy
ketones
by
palladium-catalyzed
asymmetric
1,4-disilylation of α,β-unsaturated ketones. Tetrahedron 1994, 50,
335-346; (b) Lee, K.-s., Hoveyda, A. H. Enantioselective Conjugate
Silyl Additions to Cyclic and Acyclic Unsaturated Carbonyls
Catalyzed by Cu Complexes of Chiral N-Heterocyclic Carbenes. J.
Am. Chem. Soc. 2010, 132, 2898-2900; (c) Welle, A.; Petrignet, J.;
Tinant, B.; Wouters, J.; Riant, O. Copper ‐ Catalysed Domino
Silylative Aldol Reaction Leading to Stereocontrolled Chiral
Quaternary Carbons. Chem.-Eur. J. 2010, 16, 10980-10983; (d)
Ibrahem, I.; Santoro, Himo, S. F.; Córdova, A. Enantioselective
Conjugate Silyl Additions to α, β-Unsaturated Aldehydes Catalyzed
by Combination of Transition Metal and Chiral Amine Catalysts.
Adv. Synth. Catal. 2011, 353, 245-252; (e) Calderone, J. A.; Santos, L.
W. Copper(II)-Catalyzed Silyl Conjugate Addition to α,
β-Unsaturated Conjugated Compounds: Brønsted Base-Assisted
Activation of Si–B Bond in Water. Org. Lett. 2012, 14, 2090-2093; (f)
Pace, V.; Rae, J. P.; Harb, H. Y.; Procter, D. J. NHC–Cu(I) catalysed
asymmetric conjugate silyl transfer to unsaturated lactones:
application in kinetic resolution. Chem. Commun. 2013, 49, 5150-5152;
(g) Oestreich, M. Hartmann, E.; Mewald, M. Activation of the Si–B
6
ACS Paragon Plus Environment