the National Research Fund for Fundamental Key Project 973
(
2006CB806200, 2007CB936401).
Notes and references
1
(a) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S.
Moore, Chem. Rev., 2001, 101, 3893–4011; (b) R. P. Cheng, S. H.
Gellman and W. F. DeGrado, Chem. Rev., 2001, 101, 3219–3232;
(
c) I. Huc, Eur. J. Org. Chem., 2004, 17–29.
2
For recent examples of b, g, d-peptides, see: (a) E. A. Porter, X. F.
Wang, H. S. Lee, B. Weisblum and S. H. Gellman, Nature, 2000,
4
04, 565–565; (b) J. A. Kritzer, J. D. Lear, M. E. Hodsdon and A.
Schepartz, J. Am. Chem. Soc., 2004, 126, 9468–9469; (c) G. V. M.
Sharma, P. Jayaprakash, K. Narsimulu, A. R. Sankar, K. R.
Reddy, P. R. Krishna and A. C. Kunwar, Angew. Chem., Int.
Ed., 2006, 45, 2944–2947; (d) D. S. Daniels, E. J. Petersson, J. X.
Qiu and A. Schepartz, J. Am. Chem. Soc., 2007, 129, 1532–1533.
For examples of hybrid peptides, see: (a) G. V. M. Sharma, P.
Nagendar, P. Jayaprakash, P. R. Krishna, K. V. S. Ramakrishna
and A. C. Kunwar, Angew. Chem., Int. Ed., 2005, 44, 5878–5882;
3
(
b) P. G. Vasudev, K. Ananda, S. Chatterjee, S. Aravinda, N.
Fig. 5 Solid-state structures of PIO2 (upper) and PIO3 (lower): side-
view (left) and top-view (right) with the imide units colored in green.
The hydrogen atoms except for the imide protons are omitted for
clarity.
Shamala and P. Balaram, J. Am. Chem. Soc., 2007, 129,
4039–4048; (c) S. H. Choi, I. A. Guzei and S. H. Gellman, J.
Am. Chem. Soc., 2007, 129, 13780–13781.
For examples, see: (a) V. Berl, I. Huc, R. G. Khoury, M. J. Krische
and J. M. Lehn, Nature, 2000, 407, 720–723; (b) V. Berl, I. Huc, R.
G. Khoury and J. M. Lehn, Chem.–Eur. J., 2001, 7, 2798–2809; (c)
V. Berl, I. Huc, R. G. Khoury and J. M. Lehn, Chem.–Eur. J.,
2001, 7, 2810–2820; (d) C. A. Hunter and D. H. Purvis, Angew.
Chem., Int. Ed. Engl., 1992, 31, 792–795.
4
5
dependent on either the position in the sequence or the chain
length. The above two structural differences between PIO2
and PIO3 are likely due to the ‘‘structural tunability’’—the
bond and torsion angles—of the imide unit, which is sensitive
to interactions between the stacking units in the helical
structures, for example, the i imide is shown to stack partially
with the pyridine positioning at i + 5 and partially with
another imide at i + 4.
For examples see: (a) B. Gong, Chem.–Eur. J., 2001, 7, 4336–4342;
(
b) J. L. Hou, H. P. Yi, X. B. Shao, C. Li, Z. Q. Wu, X. K. Jiang, L.
Z. Wu, C. H. Tung and Z. T. Li, Angew. Chem., Int. Ed., 2006, 45,
96–800; (c) R. W. Sinkeldam, F. J. M. Hoeben, M. J. Pouderoijen,
7
I. De Cat, J. Zhang, S. Furukawa, S. De Feyter, J. Vekemans and
E. W. Meijer, J. Am. Chem. Soc., 2006, 128, 16113–16121.
(a) H. Jiang, J. M. Leger and I. Huc, J. Am. Chem. Soc., 2003, 125,
´
3448–3449; (b) E. R. Gillies, F. Deiss, C. Staedel, J.-M. Schmitter
and I. Huc, Angew. Chem., Int. Ed., 2007, 46, 4081–4084.
(a) N. C. Singha and D. N. Sathyanarayana, J. Chem. Soc., Perkin
Trans. 2, 1997, 157–162; (b) P. S. Corbin and S. C. Zimmerman, J.
Am. Chem. Soc., 2000, 122, 3779–3780; (c) P. S. Corbin, S. C.
Zimmerman, P. A. Thiessen, N. A. Hawryluk and T. J. Murray, J.
Am. Chem. Soc., 2001, 123, 10475–10488.
6
7
As expected, the pyridine–imide oligomers possess compact
helical conformations with every five units constituting a
helical turn, that is each turn contains about 15 atoms along
the backbone (in the inner rim). Considering the coplanarity
and rigidity of the constituent units, this corresponding to the
highest curvature reached by AOAs. The imide protons all fill
the helix hollow and prevent solvent molecules penetrating
through it. All imide oxygen atoms position outward the helix.
Additionally, the homologous units positioning at i and i + 5
sites in sequence are arranged in an orderly manner along the
helical axis, for example, the imide units at 2 and 7 positions.
8
J. Garric, J. M. Le
Tetrahedron Lett., 2003, 44, 1421–1424.
9 J. M. Rodriguez and A. D. Hamilton, Angew. Chem., Int. Ed.,
007, 46, 8614–8617.
´
ger, A. Grelard, M. Ohkita and I. Huc,
2
1
0 (a) H. Masu, M. Sakai, K. Kishikawa, M. Yamamoto, K. Yama-
guchi and S. Kohmoto, J. Org. Chem., 2005, 70, 1423–1431; (b) L.
S. Evans and P. A. Gale, Chem. Commun., 2004, 1286–1287.
˚
The helical pitch is 3.4 A, similar to the pyridine–oligoamides
11 (a) J. Dai, C. S. Day and R. E. Noftle, Tetrahedron, 2003, 59,
389–9397; (b) C. D. Vanderwal and E. N. Jacobsen, J. Am. Chem.
9
and related to the thickness of one aromatic ring. The relative
inclinations of the helix are contributed by both the torsions
between the pyridine and the imide units and the imide unit
itself. The inclinations can be estimated from the torsion
angles of each consecutive four-inner-rim-atoms between the
nitrogen atoms of two pyridines attached to one imide unit.
In summary, both solution- and solid-state studies reveal
the pyridine–imide oligomers form into remarkably stable and
compact helical conformations. On basis of the advanced
features—stability and compactness, further study will focus
on possible bio-applications and electron/energy transfer
properties through the bridged oligomeric strand.
Soc., 2004, 126, 14724–14725; (c) T. Inokuma, Y. Hoashi and Y.
Takemoto, J. Am. Chem. Soc., 2006, 128, 9413–9419.
12 C. Dolain, C. L. Zhan, J. M. Leger, L. Daniels and I. Huc, J. Am.
´
Chem. Soc., 2005, 127, 2400–2401.
3 Crystal data for PIO2: crystallization solvent/precipitant: DMF/
1
diethyl ether, orthorhombic, space group P2
˚
1
2
1
2
1
, colorless, a =
.7201(14), b = 8.3506(15), c = 37.025(7) A, T = 113(1) K, Z =
7
4, GOF = 1.037. The final R indices were R1 (I 4 2s(I)) = 0.0312,
wR2 (all data) = 0.0750.
4 Crystal data for PIO3: crystallization solvent/precipitant: DMF/
1
ꢀ
diethyl ether, triclinic, space group P1, colorless, a = 11.556(2), b
˚
= 12.222(2), c = 12.249(2) A
, a = 67.75(3), b = 82.17(3), g =
8
8.75(3), Z = 2, T = 298 K, GOF = 1.149. The final R indices
were R1 (I 4 2s(I)) = 0.0983, wR2 (all data) = 0.2085. The poor
quality of this structure is due to weak diffraction intensity and
disorder of the terminal ethyl units. However, all atoms relative to
the backbone of the helix were accurately located.
We thank NSFC (Nos. 50221201, 90301010, 20471062,
5
0573084, 20303024), the Chinese Academy of Sciences, and
2
446 | Chem. Commun., 2008, 2444–2446
This journal is ꢀc The Royal Society of Chemistry 2008