Journal of the American Chemical Society
Page 8 of 10
6.95 (m, 6H), 6.77 (dd, J = 7.6, 1.5 Hz, 1H), 2.64 (sept, J = 6.7
1
2
3
4
5
6
Hz, 2H), 1.48 (d, J = 6.7 Hz, 6H), 1.10 (d, J = 6.7 Hz, 6H), 0.33
(s, 3H); 13C NMR (126 MHz, CDCl3) δ 154.4, 149.8, 142.1 (2C),
133.9, 126.7, 126.5, 123.9, 123.7, 122.7, 122.3, 120.5 (2C), 119.3,
112.6, 112.0, 110.2, 25.1 (2C), 22.2 (2C), 20.4 (2C), −11.3; HRMS-
ESI (m/z) calcd for C24H26ClN2NaOPd ([M−Na+]−) 499.0774,
found 499.0766.
(1) (a) Functional Polymers: Modern Synthetic Methods and Novel
Structures; Patil, A. O., Schulz, D. N., Novak, B. M., Eds. ACS Sympo-
sium Series 704; American Chemical Society: Washington, DC, 1998.
(b) Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479–1493. (c)
Chung, T. C. Functionalization of Polyolefins; Academic Press: Lon-
don, 2002. (d) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109,
5215–5244. (e) Dai, S.; Zhou, S.; Zhang, W.; Chen, C. Macromolecules
2016, 49, 8855−8862.
(2) (a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem.
Soc. 1996, 118, 267–268. (b) Mecking, S.; Johnson, L. K.; Wang, L.;
Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888–899. For reviews, see:
(c) Camacho, D. H.; Guan, Z. Chem. Commun. 2010, 46, 7879–7893.
(d) Franssen, N. M. G.; Reek, J. N. H.; de Bruin, B. Chem. Soc. Rev.
2013, 42, 5809–5832.
(3) (a) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R.
I. Chem. Commun. 2002, 744. For a review, see: (b) Nakamura, A.;
Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking,
S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Acc.
Chem. Res. 2013, 46, 1438–1449.
(4) (a) Carrow, B. P.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 8802–
8805. (b) Mitsushige, Y.; Carrow, B. P.; Ito, S.; Nozaki, K. Chem. Sci.
2016, 7, 737–744.
(5) (a) Nakano, R.; Nozaki, K. J. Am. Chem. Soc. 2015, 137, 10934–
10937. See also: (b) Tao, W.; Nakano, R.; Ito, S.; Nozaki, K. Angew.
Chem. Int. Ed. 2016, 55, 2835–2839.
(6) (a) Park. J. B.; Lakes. R. S. In Biomaterials: An Introduction, 3rd
ed.; Springer: New York, 2007; p. 185. (b) Brydson, J. A. In Plastics
Materials, 6th ed.; Butterworth-Heinemann: Oxford, 2013; p. 408.
(7) Rünzi, T.; Guironnet, D.; Göttker-Schnetmann, I.; Mecking, S.
J. Am. Chem. Soc. 2010, 132, 16623–16630.
(8) Gibson, V. C.; Tomov, A. Chem. Commun. 2001, 1964–1965.
(9) Borkar, S.; Yennawar, H.; Sen, A. Organometallics 2007, 26,
4711–4714.
(10) For copper systems, see: Galletti, A. M. R.; Carlini, C.;
Giaiacopi, S.; Martinelli, M.; Sbrana, G. J. Polym. Sci., A: Polym. Chem.
2007, 45, 1134–1142.
7
8
9
Preparation of Complex 4: (SP-4-3)-[2-(2,6-diisopropyl-
phenyl)imidazo[1,5-a]quinolin-9-olato-κO-1-ylidene-κC1][3-
methoxy-2,2-dimethyl-3-oxo-κO-prop-1-yl-κC1]palladium: To
a solution of complex 3 (29.2 mg, 55.8 µmol) in THF (4.0 mL)
in a 20-mL Schlenk tube were added MMA (297.1 µL, 2.79
mmol) and silver carbonate (15.4 mg, 55.8 µmol) at room
temperature. In the dark, the mixture was stirred for 18 h at
75 °C. The yield of complex 4 was determined to be 93% by
NMR analysis using 1,2,4,5-tetrabromobenzene as an internal
standard (Figure S5). The resulting mixture was passed
through a plug of Celite, and evaporated to dryness. The re-
sulting solid was dissolved in diethyl ether, and filtered to
remove some precipitates. Then, slow evaporation of the
solvent afforded the crystal of complex 4 as pale yellow rec-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1
tangular cylinders (14.2 mg, 45% yield). H NMR (500 MHz,
CDCl3) δ 7.44 (t, J = 7.8 Hz, 1H), 7.22–7.15 (m, 4H), 7.11 (d, J =
9.5 Hz, 1H), 7.02 (s, 1H), 6.96 (d, J = 9.5 Hz, 1H), 6.69 (dd, J =
7.2, 1.7 Hz, 1H), 3.89 (s, 3H), 2.63 (sept, J = 6.7 Hz, 2H), 1.35 (d,
J = 6.7 Hz, 6H), 1.07 (d, J = 6.7 Hz, 6H), 0.98 (s, 6H), 0.48 (s,
2H); 13C NMR (126 MHz, CDCl3) δ 189.8, 153.9, 151.1, 142.3,
133.9, 126.5, 126.2, 124.5, 123.6, 123.5, 121.7, 120.4 (2C), 118.3,
112.6, 109.6, 108.8, 51.6, 45.3, 27.1, 25.4 (2C), 25.0 (2C), 22.3
(2C), 20.0 (2C), 17.9; Anal. calcd for C29H34N2O3Pd C, 61.65; H,
6.07; N, 4.96 found C, 61.57; H, 6.25; N, 4.86.
ASSOCIATED CONTENT
Supporting Information
(11) For nickel systems, see: (a) Carlini, C.; Martinelli, M.; Galletti,
A. M. R.; Sbrana, G. Macromol. Chem. Phys. 2002, 203, 1606–1613. (b)
Li, X.; Li, Y.; Li, Y.; Chen, Y.; Hu, N. Organometallics 2005, 24, 2502–
2510. (c) Carlini, C.; de Luise, V.; Martinelli, M.; Galletti, A. M. R.;
Sbrana, G. J. Polym. Sci., A: Polym. Chem. 2006, 44, 620–633.
(12) (a) Gaikwad, S. R.; Deshmukh, S. S.; Gonnade, R. G.; Rajamo-
hanan, P. R.; Chikkali, S. H. ACS Macro Lett. 2015, 4, 933–937. (b)
Gaikwad, S. R.; Deshmukh, S. S.; Koshti, V. S.; Poddar, S.; Gonnade,
R. G.; Rajamohanan, P. R.; Chikkali, S. H. Macromolecules 2017, 50,
5748–5758.
The Supporting Information is available free of charge via the
characterization of palladium compounds and polymers, and
crystallographic data for 4 (PDF)
AUTHOR INFORMATION
Corresponding Author
NOTES
(13) Ölscher, F.; Göttker-Schnetmann, I.; Monteil, V.; Mecking, S.
J. Am. Chem. Soc. 2015, 137, 14819–14828.
(14) Similar [N–O]Ni complexes were reported to promote homo-
polymerization of MMA involving a radical-related process. See: He,
X.; Wu, Q. Appl. Organomet. Chem. 2006, 20, 264−271.
(15) (a) Leblanc, A.; Grau, E.; Broyer, J.-P.; Boisson, C.; Spitz, R.;
Monteil, V. Macromolecules 2011, 44, 3293−301. (b) Leblanc, A.; Broy-
er, J.-P.; Boisson, C.; Spitz, R.; Monteil, V. Pure Appl. Chem. 2012, 84,
2113−20.
(16) (a) Krähling, L.; Krey, J.; Jakobson, G.; Grolig, J.; Miksche, L.
In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH:
Weinheim, 2014. (b) In Encyclopedia of chemical technology, 4th ed.;
Kroschwitz, J. I.; Howe-Grant, M. Eds. Wiley: New York, 1992; Vol. 4,
p 728. (c) In The Merck Index: An Encyclopedia of Chemicals, Drugs,
and Biologicals, 15th ed.; O'neil, M. J.; Heckelman, P. E. Eds. Royal
Society of Chemistry: Cambridge, 2013; p 381.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by JST CREST Grant Number
JPMJCR1323, Japan. A part of this work was conducted at the
Research Hub for Advanced Nano Characterization, The
University of Tokyo, supported by MEXT, Japan. We are
grateful to Dr. Yusuke Ota and Dr. Yusuke Mitsushige for
fruitful discussion and Dr. Shrinwantu Pal for proofreading.
REFERENCES
(17) 3-Methylbut-3-en-1-ol (also called homomethallyl alcohol) is
industrially synthesized from isobutene. See: Hoelderich, F. H.;
Kollmer, F. In Catalysis; Spivey, J. J., Ed.; The Royal Society of Chem-
ACS Paragon Plus Environment