4796
D. Jo¨nsson / Tetrahedron Letters 43 (2002) 4793–4796
selective branching of the polyamine backbones, using
reductive alkylations with repetitive protocols, can be
used in order to obtain a large number of derivatives of
acylpolyamine toxins.
Stroemgaard, K.; Andersen, K.; Ruhland, T.; Krogs-
gaard-Larsen, P.; Jaroszewski, J. W. Synthesis 2001, 877–
884.
11. Wang, F.; Manku, S.; Hall, D. G. Org. Lett. 2000, 2,
1581–1583.
12. Jo¨nsson, D.; Unde´n, A. Tetrahedron Lett. 2002, 43, 3125–
3128.
Acknowledgements
13. 4-Methoxy dityl chloride (Mmd-Cl): 4-methoxy ben-
zophenone (10 g, 47.1 mmol) was dissolved in EtOH (250
ml). NaBH4 (0.9 g, 23.6 mmol, 0.5 equiv.) was added
slowly and the reduction was left to stir overnight. TLC
(petroleum ether/EtOAc, 9/1) indicated completeness of
the reduction and the mixture was poured onto water
(250 ml), stirred for 1 h and 4-methoxy benzhydrol could
be filtered off and dried. 4-Methoxy benzhydrol (5 g, 23.3
mmol) was dissolved in dried DCM (50 ml), oxalyl
chloride (2.25 ml, 25.7 mmol, 1.1 equiv.) was added
dropwise and the reaction was left stirring for 2 h at
room temperature. The solvent was evaporated and 4-
methoxydityl chloride was crystallized and recrystallized
from warm petroleum ether. Yield: 5.4 g, 99%.
14. 4,4%-Dimethoxy dityl chloride (Dod-Cl): 4,4%-dimethoxy
benzhydrol (6.0 g, 24.6 mmol) was dissolved in dried
DCM (60 ml), oxalyl chloride (2.36 ml, 27 mmol, 1.1
equiv.) was added dropwise and the reaction was left with
stirring for 1.5 h at room temperature. The solvent was
evaporated and the 4,4%-dimethoxydityl chloride was crys-
tallized and recrystallized from warm petroleum ether.
Yield: 5.8 g, 90%.
I wish to thank Assoc. Professor Anders Unde´n for
valuable scientific discussion and for his financial sup-
port with grants from the Magnus Bergwall Founda-
tion to A.U.
References
1. McCormick, K. D.; Meinwald, J. J. Chem. Ecol. 1993,
19, 2411–2451 and references cited therein.
2. Blagbrough, I. S.; Moya, E.; Taylor, S. Biochem. Soc.
Trans. 1994, 888–893 and references cited therein.
3. Eldefrawi, A. T.; Eldefrawi, M. E.; Konno, K.; Mansour,
N. A.; Nakanishi, K.; Oltz, E.; Usherwood, P. N. Proc.
Natl. Acad. Sci. USA 1988, 85, 4910–4913.
4. Tong, Y. C. Pesticide Sci. 1988, 24, 340–343.
5. Ragsdale, D.; Gant, D. B.; Anis, N. A.; Eldefrawi, A. T.;
Eldefrawi, M. E.; Konno, K.; Miledi, R. J. Pharmacol.
Exp. Ther. 1989, 251, 156–163.
6. Rozental, R.; Scoble, G. T.; Albuquerque, E. X.; Idriss,
M.; Sherby, S.; Sattelle, D. B.; Nakanishi, K.; Konno,
K.; Eldefrawi, A. T.; Eldefrawi, M. E. J. Pharmacol. Exp.
Ther. 1989, 249, 123–130.
15. Hanson, R. W.; Law, H. D. J. Chem. Soc. 1965, 7285–
7297.
16. Leznoff, C. C. Acc. Chem. Res. 1978, 11, 327–333.
17. Synthesis of N-Fmoc-amino aldehydes: 3-aminopropanol
or 2-aminoethanol (40 mmol) was dissolved in dried
DCM (150 ml) and cooled in an ice bath. Fmoc-Cl (20
mmol) dissolved in DCM (120 ml) was added through a
funnel over 30 min. After removal of cooling, the mix-
tures were stirred for another 1.5 h followed by extrac-
tion, three times with 0.5 M HCl (aq.), drying and
evaporation. N-Fmoc-protected amino alcohols were
obtained in almost quantitative yields and were converted
to N-Fmoc-protected amino aldehydes under Swern con-
ditions.21
18. HPLC analyses were performed on a Machery–Nagel KS
100/4 Nucleosil® 120-3 C18. Elution gradient was 10–70%
of B in 15 min with a flow of 0.8 ml/min. Solvent A was
0.1% TFA/H2O and solvent B was 0.1% TFA/acetoni-
trile. Detection was performed at 279 nm, and the purity
was measured by integration of the absorbance of the
Fmoc group of intermediate products or the tyrosine of
the final products.
19. MALDI-TOF analyses were performed on a Voyager-DE
STR (Applied Biosystems, USA) in reflector mode with
a-cyano-hydroxy cinnamic acid (Fluka) as matrix. Inter-
nal calibration was made against the resolved matrix
peak at 379.0930 and all obtained molecular weights are
monoisotopic.
20. Overall yields are the isolated yield compared to the
theoretical maximum yield on initial resin loading (0.6
mmol/g).
7. Anis, N.; Sherby, S.; Goodnow, R., Jr.; Niwa, M.;
Konno, K.; Kallimopoulos, T.; Bukownik, R.; Nakan-
ishi, K.; Usherwood, P. N.; Eldefrawi, A. J. Pharmacol.
Exp. Ther. 1990, 254, 764–773.
8. (a) Goodnow, R.; Konno, K.; Niwa, M.; Kallimopoulos,
T.; Bukownik, R.; Lenares, D.; Nakanishi, K. Tetra-
hedron 1990, 46, 3267–3286; (b) Goodnow, R. A., Jr.;
Bukownik, R.; Nakanishi, K.; Usherwood, P. N.; Elde-
frawi, A. T.; Anis, N. A.; Eldefrawi, M. E. J. Med. Chem.
1991, 34, 2389–2394; (c) Benson, J. A.; Schurmann, F.;
Kaufmann, L.; Gsell, L.; Piek, T. Comp. Biochem. Phys-
iol. C 1992, 102, 267–272; (d) Moya, E.; Blagbrough, I. S.
Tetrahedron Lett. 1995, 36, 9401–9404; (e) Hashimoto,
M.; Liu, Y.; Fang, K.; Li, H.-y.; Campiani, G.; Nakan-
ishi, K. Bioorg. Med. Chem. 1999, 7, 1181–1194; (f)
Stroemgaard, K.; Brierley, M. J.; Andersen, K.; Sloek, F.
A.; Mellor, I. R.; Usherwood, P. N. R.; Krogsgaard-
Larsen, P.; Jaroszewski, J. W. J. Med. Chem. 1999, 42,
5224–5234.
9. (a) Bycroft, B. W.; Chan, W. C.; Hone, N. D.; Milling-
ton, S.; Nash, I. A. J. Am. Chem. Soc. 1994, 116,
7415–7416; (b) Nash, I. A.; Bycroft, B. W.; Chan, W. C.
Tetrahedron Lett. 1996, 37, 2625–2628; (c) Stroemgaard,
K.; Brier, T. J.; Andersen, K.; Mellor, I. R.; Saghyan, A.;
Tikhonov, D.; Usherwood, P. N.; Krogsgaard-Larsen, P.;
Jaroszewski, J. W. J. Med. Chem. 2000, 43, 4526–4533;
(d) Chhabra, S. R.; Khan, A. N.; Bycroft, B. W. Tetra-
hedron Lett. 2000, 41, 1095–1098.
10. (a) Chhabra, S. R.; Khan, A. N.; Bycroft, B. W. Tetra-
hedron Lett. 2000, 41, 1099–1102; (b) Hone, N. D.;
Payne, L. J. Tetrahedron Lett. 2000, 41, 6149–6152; (c)
21. Mancuso, A.; Huang, S.; Swern, D. J. Org. Chem. 1978,
43, 2480–2482.