A R T I C L E S
Griffin et al.
via hydrogen bonding and hydrophobic interactions in an
antiparallel, back-to-back fashion to form specific dimers.
Noncovalent dimerization of glycopeptides can be both highly
favorable and cooperative with the binding of peptide ligands
and has been correlated with enhanced bacterial cell surface
binding and in vitro antibacterial potency.4f,15 Vancomycin self-
associates only weakly in solution (Kdim ) 700 M-1),13b which
prompted the question of whether covalently linked dimers of
this glycopeptide would display regained potency against VRE.16
This hypothesis has been confirmed through the synthesis and
study of vancomycin dimers linked through the C-terminal
carboxyl group16-18 as well as dimers of vancomycin and
chloroeremomycin linked via their aminodisaccharide moi-
eties.19,20 A small number of heterodimers comprising two
different glycopeptide subunits,19,20 the synthesis of vancomycin
dimers linked via the C-terminus of one subunit and the terminal
N-methyl group of a second subunit,21 and a single example of
a covalently linked dimer of eremomycin22 have also been
reported.
Figure 1. Structure of vancomycin (1) complexed to terminal D-Ala-D-
Ala and D-Ala-D-Lac segments of ligands displayed by vancomycin-
susceptible and -resistant bacteria, respectively. Hydrogen bonds are
indicated as dotted lines. Also shown are various chemical modifications
in synthons 2-5 (Scheme 1) used to prepare vancomycin dimers linked
through the carboxyl terminus (C), the amino terminus (N), the vancosamine
amino group (V), and the resorcinol side chain of amino acid residue 7
(R). The box presents a simplified depiction of vancomycin where the
heptapeptide core is abbreviated as a diamond shape but with the functional
groups at C-, N-, V- and R-positions explicated.
In this paper, we report the design, synthesis, and in vitro
biological evaluation of an array of forty covalently linked
vancomycin dimers. This work was undertaken in order to
systematically explore the structure-activity relationships among
these compounds in the service of antibiotic lead discovery and
as a platform on which to develop and illustrate the unique
aspects of multivalent drug design.
been developed. These include the ribosome-targeting protein
synthesis inhibitors quinupristin/dalfopristin (Synercid) and
linezolid (Zyvox), as well as the membrane-targeting antibiotic
daptomycin.7 A second approach has been to modify existing
glycopeptides in order to regain activity against resistant
bacterial strains.8 Here, the most promising results have been
obtained through addition of hydrophobic groups to the amino-
disaccharide moieties of vancomycin and (chloro)eremomycin.9
A third approach has sought to improve the affinity of
vancomycin for depsipeptide-containing glycopeptide precursors
through multivalency. Multivalency is a phenomenon wherein
multiple, simultaneous, energetically coupled receptor/ligand
interactions enhance the overall affinity and selectivity of
binding. Natural systems have evolved to make extensive use
of multivalency, for example, in the functioning of immuno-
globulins, in the adhesion of virus particles to target cells, and
in controlling cell-cell interactions.10 A diffuse yet growing
literature suggests that multivalency may also find general
applicability in the design of small molecule ligands,11 including
novel drugs for enzymes, receptors, transporters, and macro-
molecular structures representing the major classes of therapeutic
targets.12
Results
Multivalent Design. Our design process took into account
the singular considerations of multivalent design, including the
following:
(12) (a) Griffin, J. H.; Judice, J. K. WO 99/64037, 1999. (b) Marquess, D.;
Mammen, M.; Griffin, J. H. WO 99/66944, 1999. (c) Jenkins, T. E.;
Christensen, B. G.; Griffin, J. H. WO 99/64045, 1999. (d) Griffin, J. H.;
Moran, E. J.; Oare, D. A. WO 99/64036, 1999.
(13) (a) Waltho, J. P.; Williams, D. H. J. Am. Chem. Soc. 1989, 111, 2475-
2480. (b) Gerhard, U.; Mackay, J. P.; Maplestone, R. A.; Williams, D. H.
J. Am. Chem. Soc. 1993, 115, 232-237. (c) Mackay, J. P.; Gerhard, U.;
Beauregard, D. A.; Maplestone, R. A.; Williams, D. H. J. Am. Chem. Soc.
1994, 116, 4573-4580. (d) Mackay, J. P.; Gerhard, U.; Beauregard, D.
A.; Westwell, M. S.; Searle, M. S.; Williams, D. H. J. Am. Chem. Soc.
1994, 116, 4581-4590.
(14) Reviewed in: Loll, P. J.; Axelsen, P. H. Annu. ReV. Biophys. Biomol. Struct.
2000, 29, 265-289.
(15) (a) Beauregard, D. A.; Williams, D. H.; Gwynn, M. N.; Knowles, D. J. C.
Antimicrob. Agents Chemother. 1995, 39, 781-785. (b) Beauregard, D.
A.; Maguire, A. J.; Williams, D. H.; Reynolds, P. E. Antimicrob. Agents
Chemother. 1997, 41, 2418-2423. (c) Westwell, M. S.; Bardsley, B.;
Dancer, R. J.; Try, A. C.; Williams, D. H. Chem. Commun. 1996, 589-
590. (d) Allen, N. E.; LeTourneau, D. L.; Hobbs, J. N., Jr. Antimicrob.
Agents Chemother. 1997, 41, 66-71. (e) Cooper, M. A.; Williams, D. H.;
Cho, Y. R. Chem. Commun. 1997, 1625-1626. (f) Entress, R. M. H.;
Dancer, R. J.; O′Brien, D. P.; Try, A. C.; Cooper, M. A.; Williams, D. H.
Chem. Biol. 1998, 5, 329-337. (g) O′Brien, D. P.; Entress, R. M. H.;
Cooper, M. A.; O′Brien, S. W.; Hopkinson, A.; Williams, D. H. J. Am.
Chem. Soc. 1999, 121, 5259-5265. (h) Allen, N. E.; LeTourneau, D. L.;
Hobbs, J. N., Jr.; Thompson, R. C. Antimicrob. Agents Chemother. 2002,
46, 2344-2348.
A series of studies in solution13 and in the solid state14 have
shown that vancomycin and other glycopeptides self-associate
(7) Bush, K.; Macielag, M.; Clancy, J. Emerging Drugs 2000, 5, 347-365.
(8) Malabarba, A.; Nicas, T. I.; Thompson, R. C. Med. Res. ReV. 1997, 17,
69-137.
(9) (a) Nagarajan, R.; Schabel, A. A.; Occolowitz, J. L.; Counter, F. T.; Ott,
J. L.; Felty-Duckworth, A. M. J. Antibiot. 1989, 42, 63-72. (b) Nagarajan,
R. J. Antibiot. 1993, 46, 1181-1195. (c) Nicas, T. I.; Mullen, D. L.;
Flokowitsch, J. E.; Preston, D. A.; Snyder, N. J.; Stratford, R. E.; Cooper,
R. D. G. Antimicrob. Agents Chemother. 1995, 39, 2585-2587. (d) Cooper,
R. D. G.; Snyder, N. J.; Zweifel, M. J.; Staszak, M. A.; Wilkie, S. C.;
Nicas, T. I.; Mullen, D. L.; Butler, T. F.; Rodriguez, M. J.; Huff, B. E.;
Thompson, R. C. J. Antibiot. 1996, 49, 575-581. (e) Printsevskaya, S. S.;
Pavlov, A. Y.; Olsufyeva, E. N.; Mirchink, E. P.; Isakova, E. B.; Reznikova,
M. I.; Goldman, R. C.; Branstrom, A. A.; Baizman, E. R.; Longley, C. B.;
Sztaricskai, F.; Batta, G.; Preobrazhenskaya, M. N. J. Med. Chem. 2002,
45, 1340-1347.
(16) Sundram, U. N.; Griffin, J. H.; Nicas, T. I. J. Am. Chem. Soc. 1996, 118,
13107-13108.
(17) (a) Rao, J.; Whitesides, G. M. J. Am. Chem. Soc. 1997, 119, 10286-10287.
(b) Rao, J.; Yan, L.; Xu, B.; Whitesides, G. M. J. Am. Chem. Soc. 1999,
121, 2629-2630. (c) Rao, J.; Yan, L.; Lahiri, J.; Whitesides, G. M.; Weis,
R. M.; Warren, H. S. Chem. Biol. 1999, 6, 353-359.
(18) Adamczyk, M.; Moore, J. A.; Rege, S. D.; Yu, Z. Bioorg. Med. Chem.
Lett. 1999, 9, 2437-40.
(19) Stack, D. R.; Thompson, R. G. EP 0801075 A1, 1997.
(20) (a) Nicolaou, K. C.; Hughes, R.; Cho, S. Y.; Winssinger, N.; Smethurst,
C.; Labischinski, H.; Endermann, R. Angew. Chem., Int. Ed. 2000, 39,
3823-3828. (b) Nicolaou, K. C.; Hughes, R.; Cho, S. Y.; Winssinger, N.;
Labischinski, H.; Endermann, R. Chem.sEur. J. 2001, 7, 3824-3843.
(21) Staroske, T.; Williams, D. H. Tetrahedron Lett. 1998, 39, 4917-4920.
(22) Sztaricskai, F.; Batta, G.; Dinya, Z.; Miroshnikova, O. V.; Preobrazhenskaya,
M. N.; Hernadi, F.; Koncz, A.; Boda, Z. J. Antibiot. 2001, 54, 314-319.
(10) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998,
37, 2754-2794.
(11) (a) Portoghese, P. S. J. Med. Chem. 2001, 44, 1-11. (b) Wright, D.; Usher,
L. Curr. Org. Chem. 2001, 5, 1107-1131.
9
6518 J. AM. CHEM. SOC. VOL. 125, NO. 21, 2003