(1 H, d, 3J 8.1), 6.60 (1 H, d, 3J 7.5), 6.62 (1 H, d, 3J
9.3), 6.66–6.69 (4 H) (aryl C–Hs); 3.39 (1 H, m), 2.76–3.20
(6 H, m), 2.53–2.62 (1 H m) (bridge CH2s); dC (75 MHz; d6-
acetone; Me4Si) 136.44, 133.50, 133.39, 132.92, 132.50, 132.26,
132.23, 130.77, 129.76 (aryl C–Hs); 34.47, 34.27, 33.98, 33.21
(CH2s); 139.51, 139.34, 138.85, 138.65 (cyclophane bridge-
heads); 147.18, 145.10, 109.61 (quaternary); 117.78 (CN); m/z
(EI) 309 (M+, 34%), 104 (42), 105 (100). HRMS (CI+) 309.1519
(M+. C23H19N requires 309.1518).
Acknowledgements
The National Science Foundation is gratefully acknowledged
for allowing the purchase of an NMR system through a Major
Research Instrumentation grant (NSF CHE-0116145). Rutgers,
The State University of New Jersey, Campus at Camden, is
also acknowledged for generously providing startup funds.
Additionally, Shirin Modarai is thanked for her laboratory
assistance.
Method B using 4-cyanophenylboronic acid pinacol ester gave
4 in 83%; Method C using 4-bromobenzonitrile gave 4 in 87%.
References
1 C. J. Brown and A. C. Farthing, Nature, 1949, 164, 915.
2 (a) B. H. Smith, Bridged Aromatic Compounds, Academic Press,
New York, 1964; (b) L. Rossa, F. Vo¨gtle, V. Boekelheide, I. Tabushi
and K. Yamamura, Top. Curr. Chem., 1983, 113; (c) F. Vo¨gtle, Top.
Curr. Chem., 1983, 115; (d) F. Diederich, Cyclophanes, Royal Society
of Chemistry, London, 1991; (e) F. Vo¨gtle, Cyclophane Chemistry,
Wiley, New York, 1993; (f) E. Weber, in Topics in Current Chemistry,
Springer, Heidelberg, 1994, vol. 172; (g) V. V. Kane, W. H. de Wolf and
F. Bickelhaupt, Tetrahedron, 1994, 50, 4575; (h) G. J. Bodwell, Angew.
Chem., 1996, 108, 2221; (i) A. de Meijere and B. Ko¨nig, SYNLETT,
1997, 1221; (j) G. J. Bodwell, Organic Synthesis Highlights IV, ed.
H. G. Schmalz, Wiley-VCH, New York, 2000, p. 289; (k) H. Hopf,
Classics in Hydrocarbon Chemistry, Wiley-VCH, Weinheim, 2000;
(l) G. Gleiter and H. Hopf, Modern Cyclophane Chemistry, Wiley-
VCH, Weinheim, 2004.
4-Phenyl[2.2]paracyclophane (2)
At the same scale and using the same procedure as described in
method A with phenylboronic acid, after column chromatogra-
phy (hexane–chloroform 8 : 1), gave (Rf = 0.35) 2 (167 mg, 84%);
dH (300 MHz; d6-acetone; Me4Si) 7.46 (2 H, d, 3J 7.5), 7.35 (2 H,
t, 3J 7.2), 7.29 (1 H, t, 3J 7.4), 6.59–6.91 (7 H, m) (aryl C–Hs);
2.66–3.20 (7 H, m) 3.40–3.51 (1 H, m) (bridge CH2s); m/z (EI)
284 (M+, 27%), 180 (100), 104 (76). Such data is in agreement
with previously reported data.22,23
Method B using phenylboronic acid pinacol ester gave 2 in
87%; Method C using bromobenzene gave 2 in 79%.
3 (a) D. A. Loy, R. A. Assink, G. M. Jamison, W. F. McNamara,
S. Prabakar and D. A. Schneider, Macromolecules, 1995, 28, 5799;
(b) G. N. Gerasimov, E. L. Popova, E. V. Nikolaeva, S. N. Chvalun,
E. I. Grigoriev, L. I. Trakhtenberg, V. I. Rozenberg and H. Hopf,
Macromol. Chem. Phys., 1998, 199, 2179.
4 (a) J. Zyss, I. Ledoux, S. Volkov, V. Chernyak, S. Mukamel, G. P.
Bartholomew and G. C. Bazan, J. Am. Chem. Soc., 2000, 122, 11956;
(b) E. L. Popova, V. I. Rozenberg, Z. A. Starikova, S. Keuker-
Baumann, H. S. Kitzerow and H. Hopf, Angew. Chem. Int. Ed.,
2002, 41, 3411.
4-(2-Methylphenyl)[2.2]paracyclophane (3)
At the same scale and using the same procedure as described
in method A, 2-methylphenylboronic acid, after column chro-
matography (hexane–chloroform 7 : 1), gave (Rf = 0.33) 3
◦
(169 mg, 81%); mp = 105–110 C (from chloroform) (lit.23
=
114–116 ◦C); dH (300 MHz; d6-acetone; Me4Si) 7.71 (1 H, d,
3
3
3J 7.5), 7.41 (1 H, d, J 7.2), 7.23 (1 H, d, J 7.5), 7.29 (1 H,
3
3
d, J 7.5), 6.72 (1 H, d, J 7.8), 6.60–6.67 (3 H, m), 6.50–6.57
(3 H, m) (aryl C–Hs); 3.02–3.16 (6 H, m), 2.75–2.89 (2 H, m)
(bridge CH2s), 2.09 (3 H, s, CH3); dC (75 MHz; d6-acetone;
Me4Si) 133.65, 132.44, 132.20, 131.68, 131.59, 131.55, 129.14,
129.14, 129.01, 126.18, 125.37 (aryl C–Hs); 34.52, 34.35, 34.31,
32.66 (CH2s); 140.62, 139.90, 138.86, 138.78, 127.58, 136.30,
135.26 (quaternary); 18.93 (CH3); m/z (EI) 298 (M+, 50%), 104
(40), 178 (50), 179 (70), 193 (100). HRMS (CI+) 298.1718 (M+.
C23H22 requires 298.1722). Such data agrees with and expands
upon, the reported spectroscopic data.23
5 (a) S. E. Gibson and J. D. Knight, Org. Biomol. Chem., 2003, 1,
1256; (b) S. Dahmen and S. Bra¨se, Chem. Commun., 2002, 1, 26, and
references contained within.
6 (a) Syntheses of OFP: S. W. Chow, L. A. Pilato and W. L.
Wheelwright, J. Org. Chem., 1970, 35, 20; (b) W. R. Dolbier, Jr., J. X.
Duan and A. J. Roche, US Pat., 5841005, 1998; (c) W. R. Dolbier, Jr.,
J. X. Duan and A. J. Roche, Org. Lett., 2000, 2, 1867; (d) H. Amii,
H. Y. Hatamoto, M. Seo and K. Uneyama, J. Org. Chem., 2001, 66,
7216.
7 (a) A. J. Roche and W. R. Dolbier, Jr., J. Org. Chem., 1999, 64, 9137;
(b) A. J. Roche and W. R. Dolbier, Jr., J. Org. Chem., 2000, 65, 5282;
(c) W. R. Dolbier, Jr., J. X. Duan, K. Abboud and B. Ameduri,
J. Am. Chem. Soc., 2000, 122, 12083; (d) L. Guyard, P. Audebert,
W. R. Dolbier and J. X. Duan, J. Electroanal. Chem., 2002, 537, 189;
(e) W. R. Dolbier, Jr., J. X. Duan and A. J. Roche, US Pat. , 6392097,
2002; (f) W. R. Dolbier, Jr. and W. F. Beach, J. Fluorine Chem., 2003,
122, 97; (g) M. A. Battiste, J. X. Duan, Y. A. Zhai, I. Ghiviriga, K.
Abboud and W. R. Dolbier, Jr., J. Org. Chem., 2003, 68, 3078.
8 A. J. Roche, J. X. Duan, W. R. Dolbier, Jr. and K. A. Abboud, J. Org.
Chem., 2001, 66, 7055.
Method B using 2-methylphenylboronic acid pinacol ester
gave 3 in 86%; Method C using 2-bromotoluene gave 3 in 82%.
4,4ꢀ-Bis([2.2]paracyclophan-4-yl)biphenyl (11)
Under a counter-current of nitrogen gas, a round-bottomed
flask was charged with 4-bromo[2.2]paracyclophane
1
(0.24 g, 0.84 mmol), phenylene-1,4-diboronic acid (34 mg,
0.20 mmol), bis(triphenylphosphine)palladium(II) chloride
(14 mg, 0.02 mmol), potassium carbonate (0.32 g, 2.32 mmol),
THF (8.5 mL) and water (1.5 mL). The vessel was thoroughly
flushed with N2 and the mixture was heated under reflux for 48 h.
The reaction mixture was then cooled to room temperature,
extracted with ether (3 × 20 mL) and the extracts were dried
(MgSO4) and evaporated under reduced pressure. The crude
product was subjected to column chromatography (hexane–
chloroform 2 : 1) to give (Rf = 0.59) 11 (25 mg, 44%); mp = 103–
106 ◦C (from chloroform); dH (300 MHz; d6-acetone; Me4Si) 7.79
(4 H, d, 3J 8.4), 7.59 (4 H, d, 3J 8.4), 6.53–6.66 (14 H, m) (aryl
C–Hs); 3.53 (2 H, m), 2.67–3.22 (12 H, m), 2.58–2.63 (2 H, m)
(bridge CH2s); dC (75 MHz; d6-acetone; Me4Si) 135.27, 132.38.
131.93, 131.61, 131.42, 131.28. 129.53. 128.97, 126.12 (aryl C–
Hs); 141.53, 140.70, 140.67, 140.05 (cyclophane bridgeheads);
139.70, 139.67. 137.13 (quaternary); 34.54, 34.27, 33.99, 33.44
(CH2s). m/z (EI) 566 (M+, 100%), 119 (40), 357 (50). HRMS
(CI+) 566.3002 (M+. C44H38 requires 566.2974).
9 A. J. Roche and B. Canturk, J. Fluorine Chem.,
DOI: 10.1016/j.jfluchem.2004.11.008.
10 (a) Recent excellent reviews include: S. Kotha, K. Lahiri and D.
Kashinath, Tetrahedron, 2002, 58, 9633; (b) J. Hassan, M. Se´vignon,
C. Gozzi, E. Schulz and M. Lemaire, Chem. Rev., 2002, 102, 1359;
(c) N. Miyaura, Top. Curr. Chem., 2002, 219, 11; (d) N. Miyaura and
A. Suzuki, Chem. Rev., 1995, 95, 2457.
11 B. Konig, B. Knieriem and A. de Meijere, Chem. Ber., 1993, 126,
1643.
12 V. I. Rozenberg, D. Y. Antonov, R. P. Zhuravsky, E. V. Vorontsov
and Z. A. Starikova, Tetrahedron Lett., 2003, 44, 3801.
13 (a) V. V. Kane, A. Gerdes, W. Grahn, L. Ernst, I. Dix, P. G. Jones and
H. Hopf, Tetrahedron Lett., 2001, 42, 373; (b) K. Krohn, H. Rieger,
H. Hopf, D. Barrett, P. G. Jones and D. Doering, Chem. Ber., 1990,
123, 1729.
14 For an excellent review of cyclophane NMR spectroscopy see: L.
Ernst, Prog. Nucl. Magn. Reson. Spectrosc., 2000, 37, 47.
15 This convenient “separation” of substituent and cyclophane aryl C–
H NMR signals was useful since it assisted us in the elucidation
1
of the corresponding H NMR spectra from the bridge fluorinated
OFP analogues. In these cases, the electron withdrawing fluorines
force the OFP hydrogens to lower field, which often overlapped with
the substituent aryl C–H resonances. See ref. 9.
Using phenylene-1,4-diboronic acid bis-pinacol ester gave 11
in 33%.
5 1 8
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 5 1 5 – 5 1 9