10.1002/anie.201809703
Angewandte Chemie International Edition
COMMUNICATION
C. Chen, Y. Xue, Q. Tong, X.-N. Li, X. Chen, J. Wang, G. Yao, Z. Luo,
Y. Zhang, Angew. Chem. Int. Ed. 2015, 54, 13374−13378;
epicochalasines A−B: h) H. Zhu, C. Chen, Q. Tong, X.-N. Li, J. Yang, Y.
Xue, Z. Luo, J. Wang, G. Yao, Y. Zhang, Angew. Chem. Int. Ed. 2016,
55, 3486−3490; asperflavipine A: i) H. Zhu, C. Chen, Q. Tong, J. Yang,
G. Wei, Y. Xue, J. Wang, Z. Luo, Y. Zhang, Angew. Chem. Int. Ed.
2017, 56, 5242−5246; aspergilasines A−D: j) G. Wei, C. Chen, Q. Tong,
J. Huang, W. Wang, Z. Wu, J. Yang, J. Liu, Y. Xue, Z. Luo, J. Wang, H.
Zhu, Y. Zhang, Org. Lett. 2017, 19, 4399−4402; aureochaeglobosins
A−C: k) M.-H. Yang, M.-K. Gu, C. Han, X.-J. Guo, G.-P. Yin, P. Yu, L.-Y.
Kong, Org. Lett. 2018, 20, 3345−3348.
[15] a) S. L. Schreiber, T. S. Schreiber, D. B. Smith, J. Am. Chem. Soc.
1987, 109, 1525−1529; b) D. B. Smith, Z. Wang, S. L. Schreiber,
Tetrahedron 1990, 46, 4793−4808.
[16] Synthesis of 1: B. M. Trost, M. Ohmori, S. A. Boyd, H. Okawara, S. J.
Brickner, J. Am. Chem. Soc. 1989, 111, 8281−8284.
[17] I. Fleming, T. W. Newton, F. Roessler, J. Chem. Soc. Perkin. Trans. 1,
1981, 2527−2532.
[18] a) D. E. Van Horn, E. Negishi, J. Am. Chem. Soc. 1978, 100,
2252−2254; b) C. L. Rand, D. E. Van Horn, M. W. Moore, E. Negishi, J.
Org. Chem. 1981, 46, 4093−4096; c) E. Negishi, D. E. Van Horn, T.
Yoshida, J. Am. Chem. Soc. 1985, 107, 6639−6647; b) P. Wipf, S. Lim,
Angew. Chem. Int. Ed. Engl., 1993, 32, 1068−1071.
[5]
[6]
a) P. Ellerbrock, N. Armanino, D. Trauner, Angew. Chem. Int. Ed. 2014,
53, 13414−13418; b) P. Ellerbrock, N. Armanino, M. K. Ilg, R. Webster,
D. Trauner, Nat. Chem. 2015, 7, 879−882.
[19] Attempts to advance this iodide derived from 15 to the aspochalasan
framework failed as the vinyl group could not be oxidatively cleaved nor
an 11-membered RCM realized.
a) C.-J. Zheng, C.-L. Shao, L.-Y. Wu, M. Chen, K.-L. Wang, D.-L. Zhao,
X.-P. Sun, G.-Y. Chen, C.-Y. Wang, Mar. Drugs 2013, 11, 2054−2068;
b) L. Chen, Y.-T. Liu, B. Song, H.-W. Zhang, G. Ding, X.-Z. Liu, Y.-C.
Gu, Z.-M. Zou, Fitoterapia 2014, 96, 115−122; (c) J.-d. Hao, J.-j. Zheng,
M. Chen, C.-y. Wang, Chem. Nat. Compd. 2017, 53, 732−735; (d) J.
Choochuay, X. Xu, V. Rukachaisirikul, P. Guedduaythong, S.
Phongpaichit, J. Sakayaroj, J. Chen, X. Shen, Phytochem. Lett. 2017,
22, 122−127; (e) Y. Si, M. Tang, S. Lin, G. Chen, Q. Feng, Y. Wang, H.
Hua, J. Bai, H. Wang, Y. Pei, Tetrahedron Lett. 2018, 59, 1767−1771.
S. M. Canham, L. E. Overman, P. S. Tanis, Tetrahedron 2011, 67,
9837−9843.
[20] a) N. B. Desai, N. McKelvie, F. Ramirez, J. Am. Chem. Soc. 1962, 84,
1745−1747; b) E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13,
3769−3772; c) D. Grandjean, P. Pale, J. Chuche, Tetrahedron Lett.
1994, 35, 3529−3530.
[21] A. Arase, M. Hoshi, A. Mijin, K. Nishi, Synth. Commun. 1995, 25,
1957−1962.
[22] M. Smrcina, P. Majer, E. Majerová, T. A. Guerassina, M. A. Eissenstat,
Tetrahedron 1997, 53, 12867−12874.
[7]
[23] a) E. Vedejs, J. B. Campbell, Jr., R. C. Gadwood, J. D. Rodgers, K. L.
Spear, Y. Watanabe, J. Org. Chem. 1982, 47, 1534−1546; b) E. Vedejs,
S. Ahmad, Tetrahedron Lett. 1988, 29, 2291−2294; c) E. Vedejs, S. M.
Duncan, J. Org. Chem. 2000, 65, 6073−6081.
[8]
[9]
Y. Xu, PhD Thesis, University of California, Berkeley, 2010.
(a) H. Mayr, R. Schneider, B. Irrgang, C. Schade, J. Am. Chem. Soc.
1990, 112, 4454−4459; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B.
Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H.
Schimmel, J. Am. Chem. Soc. 2001, 123, 9500−9512; (c) H. Mayr, B.
Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66−77.
[24] C. L. Hugelshofer, T. Magauer, Synthesis 2014, 46, 1279−1296.
[25] M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune,
W. R. Roush, T. Sakai, Tetrahedron Lett. 1984, 25, 2183−2186.
[26] CCDC 1867444 (28) contain the complete crystallographic data for this
paper. These data can be obtained free of charge upon request from
The Cambridge Crystallographic Data Centre.
[10] a) G. Stork, Y. Nakahara, Y. Nakahara, W. J. Greenlee, J. Am. Chem.
Soc. 1978, 100, 7775−7777; b) G. Stork, E. Nakamura, J. Am. Chem.
Soc. 1983, 105, 5510−5512.
[27] (a) R. Bao, C. Tian, H. Zhang, Z. Wang, A. Dong, Y. Li, M. Gao, H.
Zhang, G. Liu, Y. Tang, Angew. Chem. Int. Ed. 2018, 57, Accepted
Article (10.1002/anie.201808249); (b) X. Long, Y. Ding, J. Deng, Angew.
Chem. Int. Ed. 2018, 57, Accepted Article (10.1002/anie.201808481).
[28] Proposed to the National Institutes of Health and funded as
1R01GM126228.
[11] a) E. Vedejs, J. D. Rodgers, S. J. Wittenberger, J. Am. Chem. Soc.
1988, 110, 4822−4823; b) E. Vedejs, J. G. Reid, J. D. Rodgers, S. J.
Wittenberger, J. Am. Chem. Soc. 1990, 112, 4351−4357; c) E. Vedejs,
S. J. Wittenberger, J. Am. Chem. Soc. 1990, 112, 4357−4364.
[12] In unpublished results, a separate olefin metathesis route starting from
D-ribose proved capable of accessing aspochalasin D.
[13] M. Boutellier, D. Wallach, C. Tamm, Helv. Chim. Acta. 1993, 76,
2515−2527.
[14] A. M. Haidle, A. G. Myers, Proc. Natl. Acad. Sci. 2004, 101,
12048−12053.
This article is protected by copyright. All rights reserved.