DOI: 10.1039/C6NJ00089D
Page 7 of 9
Journal Name
New Journal of Chemistry
ARTICLE
based emission changes steadily from 27 to 112 and 164 ns,
respectively, falling between the pure Eu-Ru (820 ns) and Nd-
Ru (14 ns) complexes. This means that the increase of Eu:Nd
ratio leads to an increase in the decay lifetime of 3MLCT
emission, showing an intensified energy transfer from Eu3+ to
LRu metalloligand. Moreover, this increase of Eu:Nd ratio also
results in a constant increase in the decay lifetime of Nd3+-NIR
emission (144, 191 and 262 ns). The calculated quantum yield
based on Nd3+-emission also increases from 0.04% of Nd-Ru to
0.10% of Eu-Ru-Nd with Eu:Nd ratio of 3:1 at room
temperature, and reaches to 0.61% under 77 K. These results
indicate that the energy transfer from Eu3+ to LRu can further
immigrate to Nd3+, leading to a steady increase of decay
lifetime and luminescence quantum efficiency. Similar results
have also been testified in Tb-Ru-Nd, Eu-Ru-Yb and Tb-Ru-Yb
trimetallic systems (Table 1).
panm@mail.sysu.edu.cn; cesscy@mail.sysu.edu.cn
b
State Key Laboratory of Structural Chemistry, Fujian Institute of
Research on the Structure of Matter, Chinese Academy of Sciences,
Fuzhou 350002, China
c
State Key Laboratory of Applied Organic Chemistry, Lanzhou
University, Lanzhou 730000, China
Electronic Supplementary Information (ESI) available: [PXRD, TG, more
emission and crystallographic information]. See DOI: 10.1039/b000000x/
1. (a) E. G. Moore, A. P. S. Samuel, K. N. Raymond, Acc. Chem. Res.,
2009, 42, 542-552; (b) J. Feng, H. J. Zhang, Chem. Soc. Rev., 2013, 42,
387-410; (c) A. de Bettencourt-Dias, P. S. Barber, S. Bauer, J. Am. Chem.
Soc., 2012, 134, 6987-6994; (d) B. Li, H. M. Wen, Y. Cui, G. Qian, B.
Chen, Prog. Polym. Sci., 2015, 48, 40-84; (e) J.-C. G. Bünzli, Chem. Rev.
2010, 110, 2729-2755; (f) J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev.
2005, 34, 1048-1077.
Based on above observations, we may propose a cascade f
d f energy transfer process useful for alternative and
improved NIR sensitization in Ln1-Ru-Ln2 trimetallic systems
shown in Scheme 2. Firstly, the * transition-related
excited state of Ru-metalloligand absorbs UV light and passes
energy to the accepting f-levels of Eu3+ or Tb3+, and then
2. (a) A. D’Aléo, F. Pointillart, L. Ouahab, C. Andraud, O. Maury, Coord.
Chem. Rev., 2012, 256, 1604-1620; (b) F. Artizzu, M. L. Mercuri, A.
Serpe, P. Deplano, Coord. Chem. Rev., 2011, 255, 2514-2529; (c) J. M.
Stanley, B. J. Holliday, Coord. Chem. Rev., 2012, 256, 1520-1530; (d) L.
V. Meyer, F. Schönfeld, K. Müller-Buschbaum, Chem Commun., 2014,
50, 8093-8108.
3
transfers to the MLCT energy state of Ru-metalloligand via a
3
* f d pathway. Consecutively, the MLCT state of LRu-
metalloligand transfers energy to the accepting f-levels of Nd3+
or Yb3+ via a d f pathway, leading to finally intensified NIR
emission compared to the single d f energy transfer process
in bimetallic Ln-Ru systems.
3. (a) L.-J. Xu, G.-T. Xu, Z.-N. Chen, Coord. Chem. Rev., 2014, 273-274,
47-62; (b) S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev., 2010, 39,
189-227; (c) M. C. Heffern, L. M. Matosziuk, T. J. Meade, Chem. Rev.,
2014, 114, 4496-4539; (d) S. Roy, A. Chakraborty, T. K. Maji, Coord.
Chem. Rev., 2014, 273-274, 139-164.
Conclusions
4. (a) S. J. Bradberry, A. J. Savyasachi, M. Martinez-Calvo, T.
Gunnlaugsson, Coord. Chem. Rev., 2014, 273-274, 226-241; (b) C. M. G.
dos Santos, A. J. Harte, S. J. Quinn, T. Gunnlaugsson, Coord. Chem.
Rev., 2008, 252, 2512-2527; (c) S. Swavey, R. Swavey, Coord. Chem.
Rev., 2009, 253, 2627-2638.
In summary, the coordination of Ln3+ ions with a
polypyridyl Ru-metalloligand results in either intensified red
emission of the metalloligand itself via f d energy transfer or
sensitized NIR emission of Ln ions via d f energy transfer in
bimetallic Ln-Ru systems. The dual energy transfer
probabilities generated in the trimetallic Ln1-Ru-Ln2 systems
further provide a novel f d f energy transfer pathway,
leading to an overall enhanced Ln3+-NIR luminescence. This
may open a new arena for the design and modulation of Ln3+-
based luminescent materials.
5. (a) S. I. Klink, H. Keizer, F. C. J. M. van Veggel, Angew. Chem. Int. Ed.,
2009, 39, 4319-4321; (b) A. M. Nonat, C. Allain, S. Faulkner, T.
Gunnlaugsson, Inorg. Chem., 2010, 49, 8449-8456.
6. W. S. Perry, S. J. A. Pope, C. Allain, B. J. Coe, A. M. Kenwright, S.
Faulkner, Dalton Trans. 2010, 39, 10974-10983.
7. S. D. Bergman, D. Gut, M. Kol, C. Sabatini, A. Barbieri, F. Barigelletti,
Inorg. Chem., 2005, 44, 7943-7950.
8. D. W. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. W. Wei; H. C. Zhou,
Angew. Chem. Int. Ed., 2012, 51, 10307-10310.
Acknowledgements
This work was supported by the 973 Program (2012CB821701),
the NSFC Projects (91222201, 21373276, 21450110063), the
Fundamental Research Funds for the Central Universities
(15lgzd05), the RFDP of Higher Education of China
(20120171130006), and Science and Technology Planning
Project of Guangzhou.
9. (a) C. Wang, K. E. Dekrafft, W. B. Lin, J. Am. Chem. Soc., 2012, 134,
7211-7214; (b) A. J. Hallett, B. M. Kariuki, S. J. A. Pope, Dalton Trans.,
2011, 40, 9474-9481.
10. S. R. Halper, L. Do, J. R. Stork, S. M. Cohen, J. Am. Chem. Soc., 2006,
128, 15255-15268.
11. (a) J.-C. G. Bünzli, Coord. Chem. Rev., 2015, 293-294, 19-47; (b) P. A.
Smith, C. Crawford, N. Beedoe, Z. Assefa, R. E. Sykora, Inorg. Chem.,
2012, 51, 12230-12241.
Notes and references
a
MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key 12. (a) A. P. S. Samuel, J. Xu, K. N. Raymond, Inorg. Chem., 2009, 48,
Laboratory of Optoelectronic Materials and Technologies, Lehn Institute
of Functional Materials, School of Chemistry and Chemical Engineering,
Sun Yat-Sen University, Guangzhou 510275, China
687-698; (b) D. Sykes, A. J. Cankut, N. M. Ali, A. Stephenson, S. J. P.
Spall, S. C. Parker, J. A.Weinstein, M. D. Ward, Dalton Trans., 2014, 43,
6414-6428.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 7