Dimethylzinc-Mediated Alkynylation of Imines
SCHEME 1. Alkynylation of N-Tosylphenylimine (1a) with
Two Different Alkylzinc Reagents
Prompted by these observations, we decided to investigate
the reaction of N-substituted imines 1 with mixtures of alkylzinc
reagents and acetylenes 2. To our delight, we found that they
exhibited here a similar behavior. Although zinc-mediated
alkynylation reactions of CdN electrophiles have already been
reported,5b,c,e-g,6 our findings represent the first example of a
ZnMe2-promoted addition of acetylenes to activated imines. The
results obtained in these experiments, as well as the develop-
ment of an unprecedented Zn-mediated one-pot synthesis of
propargylic imines, are reported herein.
Results and Discussion
TABLE 1. Alkynylation of Different N-Substituted Phenylimines
in the Presence of ZnMe2
First, the reaction of N-tosylphenylimine (1a) with 3 equiv
of phenylacetylene (2a) in the presence of dimethylzinc (3.0
equiv, as a commercially available 2.0 M solution in toluene)
in anhydrous toluene at room temperature was examined. Under
those conditions, the conversion of 1a was limited to about 65%
entry
substrate
PG
product
yielda (%)
(4) For reviews on addition reactions to imines, see: (a) Enders, D.;
Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895. (b) Bloch, R. Chem.
ReV. 1998, 98, 1407. (c) Alvaro, G.; Savoia, D. Synlett 2002, 651. (d)
Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069. (e) Denmark, S. E.;
Nicaise, O. J.-C. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; p 924.
(5) (a) Sakai, N.; Hirasawa, M.; Konakahara, T. Tetrahedron Lett. 2003,
44, 4171. (b) Jiang, B.; Si, Y.-G. Tetrahedron Lett. 2003, 44, 6767. (c)
Jiang, B.; Si, Y.-G. Angew. Chem., Int. Ed. 2004, 43, 216. (d) Fischer, C.;
Carreira, E. M. Org. Lett. 2004, 6, 1497. (e) Lee, K. Y.; Lee, C. G.; Na, J.
E.; Kim, J. N. Tetrahedron Lett. 2005, 46, 69. (f) Fa¨ssler, R.; Frantz, D.
E.; Oetiker, J.; Carreira, E. M. Angew. Chem., Int. Ed. 2002, 41, 3054. (g)
Topic, D.; Aschwanden, P.; Fa¨ssler, R.; Carreira, E. M. Org. Lett. 2005, 7,
5329. (h) Wu, T. R.; Chong, J. M. Org. Lett. 2006, 8, 15.
1
2
3b
4
5
6
7
8
1a
1b
1c
1d
1e
1f
Ts
Ms
3aa
3ba
3ca
3da
3ea
3fa
80
78
(82)c
91
69
0
SO2Mes
Ns
P(O)Ph2
Bn
4-(MeO)Ph
2-(MeO)Ph
1g
1h
3ga
3ha
0
76d
a After flash column chromatography (see Supporting Information for
details). b The reaction was carried out at 70 °C. c The product was only
about 90% pure (as determined by NMR). d The amount of 2.5 equiv each
of dimethylzinc and phenylacetylene was used.
(6) Zn: (a) Frantz, D. E.; Fa¨ssler, R.; Carreira, E. M. J. Am. Chem. Soc.
1999, 121, 11245. (b) Pinet, S.; Pandya, S. U.; Chavant, P. Y.; Ayling, A.;
Vallee, Y. Org. Lett. 2002, 4, 1463.
after 48 h (as determined by the NMR analysis of the crude
reaction mixture).16 However, the reaction could easily be
accelerated by raising the temperature, and after a brief
optimization, we found that a mixture of 2a and ZnMe2 (1.5
equiv each) in toluene at 50 °C was able to convert 1a
quantitatively, affording the corresponding protected propargyl-
amine 3aa in 80% yield (Scheme 1 and Table 1, entry 1).
(7) Ir: Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3, 4319.
(8) Cu: (a) Li, C.-J.; Wei, C. Chem. Commun. 2002, 268. (b) Wei, C.;
Li, C.-J. J. Am. Chem. Soc. 2002, 124, 5638. (c) Wei, C.; Mague, J. T.; Li,
C.-J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5749. (d) Wei, C.; Li, Z.; Li,
C.-J. Synlett 2004, 1472. (e) Benaglia, M.; Negri, D.; Dell’Anna, G.
Tetrahedron Lett. 2004, 45, 8705. (f) Orlandi, S.; Colombo, F.; Benaglia,
M. Synthesis 2005, 1689. (g) Park, S. B.; Alper, H. Chem. Commun. 2005,
1315. (h) Knoepfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.;
Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 216. (i) Black, D. A.;
Arndtsen, B. A. Org. Lett. 2004, 6, 1107. (j) Black, D. A.; Arndtsen, B. A.
Tetrahedron 2005, 61, 11317. (k) Taylor, A. M.; Schreiber, S. L. Org. Lett.
2006, 8, 143.
(9) Zr: Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2003,
5, 3273.
(10) Au: (a) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584. For
a heterogeneous gold catalyst, see: (b) Kantam, M. L.; Prakash, B. V.;
Reddy, C. R. V.; Sreedhar, B. Synlett 2005, 2329.
Surprisingly, when ZnEt2 (as a commercially available 1.0
M solution in heptane) was used instead of ZnMe2 under the
same conditions, the substrate was completely transformed, but
benzylamine 4, stemming from the reduction of 1a, was found
to be the major product, in a ratio of 3:1 to 3aa (Scheme 1).
Compound 4 is probably formed directly by the reaction of
substrate 1a with diethylzinc through a â-hydride transfer
accompanied by the elimination of ethylene. This is in agreement
with the observations recently reported by Qian and co-workers,
who found that, in noncoordinating solvents such as toluene or
hexane, ZnEt2 can be efficiently used to reduce N-sulfonylimines
to the corresponding protected amines in high yields.17 It is
noteworthy that in none of these experiments, including those
described below, any trace of the product resulting from the
direct alkyl addition to the substrate was found.
(11) Ag: (a) Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5, 4473. (b) Ji,
J.-X.; Au-Yeung, T. T. L.; Wu, J.; Yip, C. W.; Chan, A. S. C. AdV. Synth.
Catal. 2004, 346, 42.
(12) (a) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed.
2002, 41, 2535. (b) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel,
P. Chem.sEur. J. 2003, 9, 2797. (c) Gommermann, N.; Koradin, C.;
Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 5763. (d)
Gommermann, N.; Knochel, P. Chem. Commun. 2004, 2324. (e) Dube, H.;
Gommermann, N.; Knochel, P. Synthesis 2004, 2015. (f) Gommermann,
N.; Knochel, P. Tetrahedron 2005, 61, 11418. (g) Gommermann, N.; Gehrig,
A.; Knochel, P. Synlett 2005, 2796. (h) Gommermann, N.; Knochel, P.
Synlett 2005, 2799.
(13) Cozzi, P. G.; Rudolph, J.; Bolm, C.; Norrby, P.-O.; Tomasini, C. J.
Org. Chem. 2005, 70, 5733.
(14) Li, Z.; Upadhyay, V.; DeCamp, A. E.; DiMichele, L.; Reider, P. J.
Synthesis 1999, 1453.
Having established the optimal reaction conditions for the
conversion of 1a, the effect of the nature of the nitrogen atom
protecting group was examined. Thus, various N-substituted
(15) The activation of alkyl-, aryl-, and alkynylzinc species is often
carried out using amino alcohols as ligands: (a) Rasmussen, T.; Norrby,
P.-O. J. Am. Chem. Soc. 2003, 125, 5130. (b) Rudolph, J.; Rasmussen, T.;
Bolm, C.; Norrby, P.-O. Angew. Chem., Int. Ed. 2003, 42, 3002. (c) Rudolph,
J.; Bolm, C.; Norrby, P.-O. J. Am. Chem. Soc. 2005, 127, 1548. (d) Frantz,
D. E.; Fa¨ssler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806.
(16) This conversion value is based on the integration of the signals of
the starting material (proton of the imino group, δ 8.98 ppm) and of the
product (proton on the N-bearing carbon atom, δ 4.91 ppm) in the 1H NMR
spectrum of the crude reaction mixture. Signals of other compounds were
not detected in the spectrum.
J. Org. Chem, Vol. 71, No. 4, 2006 1559