C. J. Bruns et al. / Tetrahedron Letters 51 (2010) 983–986
985
compared to the purification of the same compound after the first
Acknowledgment
step in Method 2. In this case, the impurities are much easier to
separate using FCC (SiO2, EtOAc/hexanes), which avoids the incon-
venience and danger of using a heated solvent as the eluant.
The final ring-closing step17 is similar to that of Method 2, the
only modifications being a slow addition of reactants by syringe
pump injection and the precipitation of the final product from
CH2Cl2/MeOH. We found that injecting BTEEEEN and DHNP over
the course of 48 h improved the yield by 7% in comparison with
the reported yield in the literature,9b affording DN38C10 in an
overall yield of 28%. In summary, we have found this three-step
method (Method 4) for the synthesis of DN38C10 to be the most
facile, practical, and high-yielding route to DN38C10. Method 4
exemplifies that subtle differences in synthetic protocol can corre-
spond to relatively large differences in overall yield and difficulty.
A comparison between the four methods is drawn in Table 1.
Method 4—the new proposed method—has an added advantage
that is only shared with Method 2: it is that constitutionally asym-
metric crown ethers can be prepared in a modular fashion from the
penultimate product, namely BTEEEEN. Indeed, it is surprising that
Method 4 has not been described already in the literature since it is
replete with examples12b,18 of other crown-10 ethers synthesized
from BTEEEEN. We have also assessed the use of Method 4 in the
preparation of asymmetric crown ethers by carrying out a ring-
closing reaction (Scheme 4) between methyl 3,5-dihydroxybenzo-
ate and BTEEEEN. We found that DN35C10-CO2Me is formed in 46%
yield, an 11% improvement over the literature reports.18d,19 This
crown ether could be modified to be employed in procedures to
immobilize, polymerize, and coordinate MIMs to metals.
This material is based upon work supported by the National Sci-
ence Foundation under CHE-0924620.
References and notes
1. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495–2496; (b) Pedersen, C. J. J. Am.
Chem. Soc. 1967, 89, 7017–7036; (c) Pedersen, C. J. Aldrichim. Acta 1971, 4, 1–4;
(d) Pedersen, C. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1021–1027.
2. Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009–1020.
3. Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89–112.
4. (a) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393–401; (b) Cantrill, S.
J.; Pease, A. R.; Stoddart, J. F. J. Chem. Soc., Dalton Trans. 2000, 3715–3734; (c) Li,
Q.; Zhang, W.; Miljanic´, O. Š.; Sue, C.-H.; Zhao, Y.-L.; Liu, L.; Knobler, C. B.;
Stoddart, J. F.; Yaghi, O. M. Science 2009, 325, 855–859.
5. (a) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1155–1196; (b)
Chak, C.-P.; Xuan, S.; Mendes, P. M.; Yu, J. C.; Cheng, C. H. K.; Leung, K. C.-F. ACS
Nano 2009, 3, 2129–2138.
6. (a) Allwood, B. L.; Colquhoun, H. M.; Doughty, S. M.; Kohnke, F. H.; Slawin, A. M.
Z.; Stoddart, J. F.; Williams, D. J.; Zarzycki, R. J. Chem. Soc., Chem. Commun. 1987,
1054–1058; (b) Allwood, B. L.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams,
D. J. J. Chem. Soc., Chem. Commun. 1987, 1058–1061; (c) Ashton, P. R.; Slawin, A.
M. Z.; Spencer, N.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun.
1987, 1066–1069.
7. (a) Anderson, S.; Anderson, H. L.; Sanders, J. K. M. Acc. Chem. Res. 1993, 26, 469–
475; (b) Templated Organic Synthesis; Diederich, F., Stang, P. J., Eds.; Wiley-VCH:
Weinheim, Germany, 2000; (c) Stoddart, J. F.; Tseng, H.-R. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 4797–4800; (d) Griffiths, K. E.; Stoddart, J. F. Pure Appl. Chem.
2008, 80, 485–506.
8. (a) Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725–2829; (b)
Stoddart, J. F.; Colquhoun, H. M. Tetrahedron 2008, 64, 8231–8263; (c) Stoddart,
J. F. Chem. Soc. Rev. 2009, 38, 1802–1820.
9. (a) Ashton, P. R.; Chrystal, E. J. T.; Mathias, J. P.; Parry, K. P.; Slawin, A. M. Z.;
Spencer, N.; Stoddart, J. F.; Williams, D. J. Tetrahedron Lett. 1987, 28, 6367–
6370; (b) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem. Eur. J.
1998, 4, 608–620; (c) Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Boyd, S. E.;
Credi, A.; Lee, J. Y.; Menzer, S.; Stoddart, J. F.; Venturi, M.; Williams, D. J. J. Am.
Chem. Soc. 1998, 120, 4295–4307.
10. For a few examples, see: (a) Nakamura, Y.; Minami, S.; Iizuka, K.; Nishimura, J.
Angew. Chem., Int. Ed. 2003, 42, 3158–3162; (b) Blanco, V.; Chas, M.; Abella, D.;
Peinador, C.; Quintela, J. M. J. Am. Chem. Soc. 2007, 129, 13978–13986; (c)
Mezei, G.; Kampf, J. W.; Pecoraro, V. L. New J. Chem. 2007, 31, 439–446; (d)
Cooke, G.; Daniels, L. M.; Cazier, F.; Garety, J. F.; Hewage, S. G.; Parkin, A.;
Rabani, G.; Rotello, V. M.; Wilson, C. C.; Woisel, P. Tetrahedron 2007, 63, 11114–
11121; (e) Christinat, N.; Scopelliti, R.; Severin, K. Chem. Commun. 2008, 3660–
3662; (f) Cagulada, A. M.; Hamilton, D. G. J. Am. Chem. Soc. 2009, 131, 902–903;
(g) Koshkakaryan, G.; Klivansky, L. M.; Cao, D.; Snauko, M.; Teat, S. J.; Struppe, J.
O.; Liu, Y. J. Am. Chem. Soc. 2009, 131, 2078–2079.
In conclusion, we have developed a straightforward three-step
procedure to make 1,5-dinaphtho[38]crown-10 which requires
purification only in the final step of the reaction sequence. The
purification-free route to BTEEEEN, combined with the slow injec-
tion ring-closure procedure gives the new method of synthesis a
unique advantage when it comes to preparing asymmetric
crown-10 ethers in better yields than those previously reported
in the literature. Given the status of 1,5-dinaphtho[38]crown-10
and its analogues, preparing them easier and faster means that
applications of MIMs can be brought into sharper focus.
11. (a) Tseng, H.-R.; Vignon, S. A.; Celestre, P. C.; Stoddart, J. F.; White, A. J. P.;
Williams, D. J. Chem.-Eur. J. 2003, 9, 543–556; (b) Vignon, S. A.; Stoddart, J. F
Collect. Czech. Chem. Commun. 2005, 70, 1493–1576.
Table 1
12. (a) Ashton, P. R.; Brown, C. L.; Chrystal, E. J. T.; Goodnow, T. T.; Kaifer, A. E.;
Parry, K. P.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Angew.
Chem., Int. Ed. Engl. 1991, 30, 1039–1042; (b) Ashton, P. R.; Ballardini, R.;
Balzani, V.; Credi, A.; Gandolfi, M. T.; Menzer, S.; Pérez-García, L.; Prodi, L.;
Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1995,
117, 11171–11197; (c) Asakawa, M.; Dehaen, W.; L’abbé, G.; Menzer, S.;
Nouwen, J.; Raymo, F. M.; Stoddart, J. F.; Williams, D. J. J. Org. Chem. 1996, 61,
9591–9595; (d) Hamilton, D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat,
S. J. Chem. Commun. 1997, 897–898; (e) Asakawa, M.; Ashton, P. R.; Boyd, S. E.;
Brown, C. L.; Menzer, S.; Pasini, D.; Stoddart, J. F.; Tolley, M. S.; White, A. J. P.;
Williams, D. J.; Wyatt, P. G. Chem.-Eur. J. 1997, 3, 463–481; (f) Houk, K. N.;
Menzer, S.; Newton, S. P.; Raymo, F. M.; Stoddart, J. F.; Williams, D. J. J. Am.
Chem. Soc. 1999, 121, 1479–1487; (g) Bria, M.; Bigot, J.; Cooke, G.; Lyskawa, J.;
Rabani, G.; Rotello, V. M.; Woisel, P. Tetrahedron 2009, 65, 400–407.
13. (a) Mattersteig, G.; Montali, M.; Shipway, A. N.; Spencer, N.; Stoddart, J. F.;
Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed.
1998, 37, 333–337; (b) Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2001, 40, 1216–1221; (c) Ashton, P. R.; Baldoni, V.;
Balzani, V.; Credi, A.; Hoffmann, H. D. A.; Martínez-Díaz, M.-V.; Raymo, F. M.;
Stoddart, J. F.; Venturi, M. Chem.-Eur. J. 2001, 7, 3482–3493; (d) Vignon, S. A.;
Jarrosson, T.; Iijima, T.; Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem.
Soc. 2004, 126, 9884–9885; (e) Koshkakaryan, G.; Parimal, K.; He, J.; Zhang, X.;
Abliz, Z.; Flood, A. H.; Liu, Y. Chem.-Eur. J. 2008, 14, 10211–10218.
14. Shirude, P. S.; Kumar, V. A.; Ganesh, K. N. Eur. J. Org. Chem. 2005, 24, 5207–
5215.
Comparison between literature methods (Methods 1–3) and Method 4 by number of
steps, overall yield, FCC purifications, and reaction time
Method
Stepsa
Yieldb (%)
FCCc
Timed (days)
1
2
3
4
4
2
1
3
4
16
16
28
4
3
2
1
5
4
7
4
a
b
c
Number of steps from DHNP as starting material.
Total yield over the number of steps in column two (Steps).
Number of purifications by FCC including tosylation in Scheme 3.
Total reaction time (workups and purifications not considered).
d
HO
O
O
O
O
O
O
O
O
O
O
O
OTs
O
O
OMe
O
HO
O
K2CO3
Me2CO
Δ / 3 d
OMe
O
OTs
15. Ouchi, M.; Inoue, Y.; Liu, Y.; Nagamune, S.; Nakamura, S.; Wada, K.; Hakushi, T.
Bull. Chem. Soc. Jpn. 1990, 63, 1260–1262.
46%
O
O
O
O
16. Ashton, P. R.; Huff, J.; Menzer, S.; Parsons, I. W.; Preece, J. A.; Stoddart, J. F.;
Tolley, M. S.; White, A. J. P.; Williams, D. Chem.-Eur. J. 1996, 2, 31–44.
17. A typical ring-closing procedure is described. DHNP (160 mg, 1.0 mmol) and
BTEEEEN (820 mg, 1.0 mmol) were dissolved in Me2CO (40 mL) and injected
into a suspension of K2CO3 (7 g, 51 mmol) in Me2CO (200 mL) under reflux at a
DN35C10-CO2Me
functionalized asymmetric crown-10 ether from
BTEEEEN
Scheme 4. Synthesis of
a
BTEEEEN.