Angewandte Chemie International Edition
10.1002/anie.201913773
COMMUNICATION
3
+
La ions in 10 are bridged by one N(SiMe
3
)Me
2
SiCH
2
and two
Z. Su, C. Hu, P. Xiao, Y. He, Z. Song, J. Am. Chem. Soc. 2016, 138,
1877–1883; g) Z. Chu, K. Wang, L. Gao, Z. Song, Chem. Commun. 2017,
hydrido groups. The two ene-diamido ligands were bonded to the
+
53, 3078–3081; h) Y. Zhang, Q. Guo, X. Sun, J. Lu, Y. Cao, Q. Pu, Z.
Chu, L. Gao, Z. Song, Angew. Chem. Int. Ed. 2018, 57, 942–946; Angew.
Chem. 2018, 130, 954–958.
two K ions via the K-arene interactions. The La
2
H
2
skeleton is
folded with a 39° dihedral angle between the two H-La-H planes.
The La–H bond lengths are comparable to those reported for
lanthanum hydride complexes.[19b] The La2–C1 bond length
[
3]
a) C. Eaborn, J. D. Smith, J. Chem. Soc., Dalton Trans. 2001, 1541–
1552; b) C. Eaborn, J. Chem. Soc., Dalton Trans. 2001, 3397–3406; c)
(
2.701(12) Å) is close to the typical distances reported for
A. Schnepf, R. Köppe, H. Schnöckel, Angew. Chem. Int. Ed. 2001, 40,
1241–1243; Angew. Chem. 2001, 113, 1287–1290; d) A. C. Jones, A. W.
Sanders, W. H. Sikorski, K. L. Jansen, H. J. Reich, J. Am. Chem. Soc.
[
20]
lanthanum alkyl complexes (La–C from 2.510 to 2.632 Å).
It is noted that the single crystals of 10 contain a significant
amount of KL[(Me Si) N]La(μ-H) La(H)(THF)LK 9 probably due to
2
008, 130, 6060–6061.
R. J. P. Corriu, M. Granier, G. Lanneau, J. Organometal. Chem. 1998,
62, 79–88.
3
2
2
[
21]
[4]
the low solubility of the ate complexes in organic solvents. It is
reasonable to assume that 9 is the intermediate to 10 via the
activation of the C–H bond. It was found that dissolving 9 in
toluene quickly led to the formation of 10 (Scheme 3), indicating
that 9 is not stable in solution. The structure of 9 with a terminal
La–H bond is shown in Figure 2. To the best of our knowledge, it
is the first example of structurally characterized lanthanum
complex with a terminal La–H bond. The catalytic behaviour of the
hydride 10 (95% isolated yield of 8a after 4 hours at 80 °C) was
comparable to that of 3, indicating that the catalytic cycle adopts
the generally accepted σ-bond metathesis/coordination-insertion
mechanism with the rare-earth hydride intermediates.[10,16]
5
[
5]
6]
Z. Liu, H. Tan, T. Fu, Y. Xia, D. Qiu. Y. Zhang, J. Wang, J. Am. Chem.
Soc. 2015, 137, 12800–12803.
[
H. Hazrati, M. Oestreich, Org. Lett. 2018, 20, 5367–5369.
[7]
a) H. Grutzmacher, J. Liedtke, S. Loss, C. Widauer, Tetrahedron 2000,
56, 143–156; b) P.-F. Fu, J. Mol. Catal. A: Chem. 2006, 243, 253–257;
c) P. Pawluć, A. Gorczyński, M. Zaranek, S. Witomska, A. Bocian, A. R.
Stefankiewicz, M. Kubicki, V. Patroniak, Catal. Commun. 2016, 78, 71–
7
4.
a) B. M. Trost, Z. T. Ball, Synthesis 2005, 853–887; b) B. Marciniec, H.
Maciejewski, C. Pietraszuk, P. Pawluć, in Hydrosilylation:
[
8]
A
Comprehensive Review on Recent Advances, Vol. 1 (Ed.: B. Marciniec),
Springer, Berlin, 2009, chap. 2 and 3; c) D. S. W. Lim, E. A. Anderson,
Synthesis 2012, 983–1010; d) Y. Nakajima, S. Shimada, RSC Adv. 2015,
5, 20603−20616; e) J. Sun, L. Deng, ACS Catal. 2016, 6, 290−300.
M.-Y. Hu, J. Lian, W. Sun, T.-Z. Qiao, S.-F. Zhu, J. Am. Chem. Soc. 2019,
In summary, we have disclosed that the lanthanum bis(amido)
ate complex
3
enabled highly efficient and selective
dihydrosilylation of aryl and silyl-substituted internal alkynes,
giving geminal bis and tris(silanes), respectively, in high yields.
The high activity could be attributed to the anionic nature of the
catalyst and large lanthanum ion. Compared to the neutral amide
complexes, the ate complex 3 features the much more polarized
La–N bonds, which could facilitate the σ-bond metathesis with
hydrosilanes to form active rare-earth hydride intermediates.
Furthermore, the large lanthanum ion could provide more open
space for the coordination of sterically demanding trisubstituted
alkenes. The present results demonstrated the potentials of rare-
earth ate complexes in the activation of hydrosilanes and
sterically demanding alkenes. Further studies for the broad
catalytic applications of ene-diamido rare-earth ate complexes
are currently in progress.
[9]
1
41, 4579–4583.
[
10] a) J. Li, C. Zhao, J. Liu, H. Huang, F. Wang, X. Xu, C. Cui, Inorg. Chem.
2016, 55, 9105–9111; b) J. Liu, W. Chen, J. Li, C. Cui, ACS Catal. 2018,
8, 2230–2235.
[
11] a) T. V. Mahrova, G. K. Fukin, A. V. Cherkasov, A. A. Trifonov, N. Ajellal,
J.-F. Carpentier, Inorg. Chem. 2009, 48, 4258–4266; b) T. K. Panda, H.
Kaneko, K. Pal, H. Tsurugi, K. Mashima, Organometallics 2010, 29,
2610–2615.
[12] Y. Bai, W. Chen, J. Li, C. Cui, Coord. Chem. Rev. 2019, 383, 132–154.
[
13] a) G. R. Giesbrecht, G. D. Whitener, J. Arnold, J. Chem. Soc., Dalton
Trans. 2001, 923−927; b) D. V. Vitanova, F. Hampel K. C. Hultzsch, J.
Organometal. Chem. 2005, 690, 5182−5197; c) A. N. Kornev, V. V.
Sushev, Y. S. Panova, N. V. Belina, O. V. Lukoyanova, G. K. Fukin, S.
Y. Ketkov, G. A. Abakumov, P. Lönnecke, E. Hey-Hawkins, Inorg. Chem.
2012, 51, 874−881; d) F. Wang, Y. Wei, S. Wang, X. Zhu, S. Zhou, G.
Yang, X. Gu, G. Zhang, X. Mu, Organometallics 2015, 34, 86−93.
[14] T. Gans-Eichler, D. Gudat, K. Nättinen, M. Nieger, Chem. Eur. J. 2006,
1
2, 1162−1173.
Acknowledgements
[
15] A. A. Kissel, T. V. Mahrova, D. M. Lyubov, A. V. Cherkasov, G. K. Fukin,
A. A. Trifonov, I. Del Rosal, L. Maron, Dalton Trans. 2015, 44, 12137–
We are grateful to the National Natural Science Foundation of
China (Grant No. 21890722 and 21632006) for financial support.
12148.
[16] a) G. A. Molander, J. A. C. Romero, Chem. Rev. 2002, 102, 2161−2186;
b) D. Liu, B. Liu, Z. Pan, J. Li, C. Cui, Sci. China Chem. 2019, 62, 571–
682.
[
17] a) B. B. Snider, M. Karras, R. S. E. Conn, J. Am. Chem. Soc. 1978, 100,
Conflict of interest
4624−4626; b) Y. Gao, F. Sato, J. Chem. Soc. Chem. Commun. 1995,
59−660. c) E. Shirakawa, T. Yamagami, T. Kimura, S. Yamaguchi, T.
6
The authors declare no conflict of interest.
Hayashi, J. Am. Chem. Soc. 2005, 127, 17164–17165; d) B. H. Tan, J.
Dong, N. Yoshikai, Angew. Chem. Int. Ed. 2012, 51, 9610−9614; Angew.
Chem. 2012, 124, 9748−9752; e) Y. H. Lee, B. Morandi, Angew. Chem.
Int. Ed. 2019, 58, 6444−6448; Angew. Chem. 2019, 131, 6510−6515.
18] a) J. Oyamada, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2011, 50,
Keywords: rare-earth metal • hydrosilylation • alkyne • hydride •
ate complex
[
1
0720−10723; Angew. Chem. 2011, 123, 10908−10911; b) D. Liu, C.
[
[
1]
2]
The Chemistry of Organic Silicon Compounds (Eds.: Z. Rappoport, Y.
Apeloig), Wiley: New York, 1998; Vol. 2, p 1687.
Yao, R. Wang, M. Wang, Z. Wang, C. Wu, F. Lin, S. Li, X. Wan, D. Cui,
Angew. Chem. Int. Ed. 2015, 54, 5205−5209; Angew. Chem. 2015, 127,
a) L. Gao, Y. Zhang, Z. Song, Synlett 2013, 24, 139–144; b) R. J. P.
Corriu, M. Granier, G. F. Lanneau J. Organometal. Chem. 1998, 562,
5294−5298.
[
19] a) G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann,
T. J. Marks, J. Am. Chem. Soc. 1985, 107, 8091−8103; b) C. Wang, L.
Xiang, X. Leng, Y. Chen, Dalton Trans. 2017, 46, 1218−1227.
79–88; c) D. R. Williams, A. I. Morales-Ramos, C. M. Williams, Org. Lett.
2006, 8, 4393–4396; d) Z. Yin, Z. Liu, Z. Huang, Y. Chu, J. Hu, L. Gao,
Z. Song, Org. Lett. 2015, 17, 1553–1556; e) L. Li, Y. Chu, L. Gao, Z.
Song, Chem. Commun. 2015, 51, 15546–15549; f) Z. Liu, X. Lin, N. Yang,
[
20] a) S. Bambirra, M. W. Bouwkamp, A. Meetsma, B. Hessen, J. Am. Chem.
Soc. 2004, 126, 9182−9183; b) C. G. J. Tazelaar, S. Bambirra, D. van
This article is protected by copyright. All rights reserved.