10.1002/ange.202004697
Angewandte Chemie
COMMUNICATION
materials relative to their TTFTB congeners are likely due to their
lower carrier concentrations. However, attempts to post-
synthetically oxidatively or reductively dope these materials have
not resulted in higher conductivities thus far (Figure S25 and
Table S13), leading us to hypothesize that other oxidation states
of the linker may not be stable in these structures.
[8]
J. Park, M. Lee, D. Feng, Z. Huang, A. C. Hinckley, A. Yakovenko,
X. Zou, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2018, 140, 10315–
10323.
[9]
D. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L.
Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, et al., Nat. Energy
2018, 3, 30–36.
[10]
S. S. Shinde, C. H. Lee, J.-Y. Jung, N. K. Wagh, S.-H. Kim, D.-H.
Kim, C. Lin, S. U. Lee, J.-H. Lee, Energy Environ. Sci. 2019, 12,
727–738.
In summary, whereas TTFTB stood out thus far in forming
unique MOF topologies with strong stacking that engendered
good charge transport, isoreticular substitution of TTFTB with new
nickel glyoximate complexes yielded three new materials with
identical topology and similar electrical properties in line with their
reduced charge carrier density. This work introduces square
planar metal glyoximate complexes as a metallolinker platform for
MOFs in which the intermolecular arrangements of linkers
delineate their optical and electronic properties. In general, further
development of isoreticular strategies for linkers exhibiting strong
stacking interactions can inform the targeted design of new
conductive MOFs.
[11]
[12]
[13]
[14]
K. W. Nam, S. S. Park, R. dos Reis, V. P. Dravid, H. Kim, C. A.
Mirkin, J. F. Stoddart, Nat. Commun. 2019, 10, 4948.
E. M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath,
M. Dincă, Nat. Commun. 2016, 7, 10942.
C. A. Downes, A. J. Clough, K. Chen, J. W. Yoo, S. C. Marinescu,
ACS Appl. Mater. Interfaces 2018, 10, 1719–1727.
R. Matheu, E. Gutierrez-Puebla, M. Á. Monge, C. S. Diercks, J.
Kang, M. S. Prévot, X. Pei, N. Hanikel, B. Zhang, P. Yang, et al., J.
Am. Chem. Soc. 2019, 141, 17081–17085.
[15]
S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y.
Nakanishi, Y. Kitagawa, K. Yamaguchi, A. Kobayashi, H. Kitagawa,
Inorg. Chem. 2009, 48, 9048–9050.
Acknowledgements
[16]
[17]
T. C. Narayan, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc.
2012, 134, 12932–12935.
This work was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences (DE-
SC0018235). L. S. X. thanks the National Science Foundation for
support through the Graduate Research Fellowship Program
(1122374). M. J. C. thanks the Polish National Agency for
Academic Exchange for Bekker fellowship. We acknowledge
Ulugbek Barotov for preliminary studies on related metallolinkers.
We thank Dr. Constanze Neumann for assistance with ICP-MS
experiments. We are grateful to Grigorii Skorupskii for assistance
with crystallography and helpful discussions, and to Julius
Oppenheim for insightful suggestions regarding interpretation of
UV–vis data.
T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J. H.
Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, et al., J. Am. Chem.
Soc. 2013, 135, 2462–2465.
[18]
D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K.
Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136,
8859–8862.
[19]
[20]
D. Chen, H. Xing, Z. Su, C. Wang, Chem. Commun. 2016, 52,
2019–2022.
L. Qu, H. Iguchi, S. Takaishi, F. Habib, C. F. Leong, D. M.
D’Alessandro, T. Yoshida, H. Abe, E. Nishibori, M. Yamashita, J.
Am. Chem. Soc. 2019, 141, 6802–6806.
[21]
H. C. Wentz, G. Skorupskii, A. B. Bonfim, J. L. Mancuso, C. H.
Hendon, E. H. Oriel, G. T. Sazama, M. G. Campbell, Chem. Sci.
2020, 11, 1342–1346.
Conflict of interest
The authors declare no conflict of interest.
[22]
[23]
[24]
[25]
S. S. Park, E. R. Hontz, L. Sun, C. H. Hendon, A. Walsh, T. Van
Voorhis, M. Dincă, J. Am. Chem. Soc. 2015, 137, 1774–1777.
L. S. Xie, E. V. Alexandrov, G. Skorupskii, D. M. Proserpio, M.
Dincă, Chem. Sci. 2019, 10, 8558–8565.
Keywords: conducting materials • glyoximes • metal–organic
frameworks • reticular chemistry • stacking interactions
G. Skorupskii, B. A. Trump, T. W. Kasel, C. M. Brown, C. H.
Hendon, M. Dincă, Nat. Chem. 2020, 12, 131–136.
J. Su, T.-H. Hu, R. Murase, H.-Y. Wang, D. M. D’Alessandro, M.
Kurmoo, J.-L. Zuo, Inorg. Chem. 2019, 58, 3698–3706.
L. S. Xie, M. Dincă, Isr. J. Chem. 2018, 58, 1119–1122.
J. Castells-Gil, S. Mañas-Valero, I. J. Vitórica-Yrezábal, D. Ananias,
J. Rocha, R. Santiago, S. T. Bromley, J. J. Baldoví, E. Coronado, M.
Souto, et al., Chem. Eur. J. 2019, 25, 12636–12643.
O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi,
J. Kim, Nature 2003, 423, 705–714.
[1]
[2]
[3]
[4]
[5]
L. Sun, M. G. Campbell, M. Dincă, Angew. Chem. Int. Ed. 2016, 55,
3566–3579.
L. S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 2020, 120, in
press. DOI: 10.1021/acs.chemrev.9b00766
M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dincă,
Angew. Chem. Int. Ed. 2015, 54, 4349–4352.
Z. Meng, A. Aykanat, K. A. Mirica, J. Am. Chem. Soc. 2019, 141,
2046–2053.
[26]
[27]
[28]
[29]
[30]
M. L. Aubrey, M. T. Kapelewski, J. F. Melville, J. Oktawiec, D.
Presti, L. Gagliardi, J. R. Long, J. Am. Chem. Soc. 2019, 141,
5005–5013.
S. S. Park, C. H. Hendon, A. J. Fielding, A. Walsh, M. O’Keeffe, M.
Dincă, J. Am. Chem. Soc. 2017, 139, 3619–3622.
L. Tschugaeff, Berichte der Dtsch. Chem. Gesellschaft 1905, 38,
2520–2522.
[6]
[7]
I. Stassen, J.-H. Dou, C. Hendon, M. Dincă, ACS Cent. Sci. 2019, 5,
1425–1431.
[31]
[32]
E. L. Bickerdike, H. H. Willard, Anal. Chem. 1952, 24, 1026.
N. Martín, Chem. Commun. 2013, 49, 7025–7027.
D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn,
M. Dincă, Nat. Mater. 2017, 16, 220–225.
4
This article is protected by copyright. All rights reserved.