Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
inhibitor of Elastase (LasB) as major virulence factor of P.
aeruginosa PA14 that is responsible for the pathogen’s ability
to evade the immune response and establish life-threatening
infections.40, 41
S A, 2001, 98, 11633-11637.
DOI: 10.1039/C6CC06295D
18. M. Starkey, F. Lepine, D. Maura, A. Bandyopadhaya, B. Lesic, J.
X. He, T. Kitao, V. Righi, S. Milot, A. Tzika and L. Rahme, Plos
Pathogens, 2014, 10.
In conclusion, PQS derived quinolones with heteroatom
substitutions represent highly interesting privileged structures
that can be easily accessed by organic synthesis. Specifically,
we demonstrate that 3-hydroxy-4-thioquinolone derivatives
are promising candidates for the development of customized
elastase inhibitors. We show evidence that our most active
compound binds directly to the active site zinc of the enzyme
and inhibits elastolytic activity in vitro and also in cultures of
live cells. Our newly developed core scaffold thus represents
an unprecedented chemical tool for studying elastase function
and highly promising lead structure for further development of
potential anti-virulence drugs.
We thank Prof. Andreas Marx and his group for their generous
support. We gratefully acknowledge funding by the Emmy
Noether program of the Deutsche Forschungsgemeinschaft
(DFG), EU FP7 Marie Curie Zukunftskolleg Incoming Fellowship
Program – University of Konstanz grant no. 291784, Fonds der
Chemischen Industrie (FCI), Konstanz Research School
Chemical Biology (KoRS-CB), and CRC969 (DFG). DS was
supported by a KoRS-CB PhD fellowship. We thank PD Dr.
David Schleheck and Prof. Christof Hauck for the use of their
S2 facilities, and Atul Pawar for help with Pymol.
19. C. Lu, B. Kirsch, C. K. Maurer, J. C. de Jong, A. Braunshausen, A.
Steinbach and R. W. Hartmann, Eur J Med Chem, 2014, 79, 173-
183.
20. A. Ilangovan, M. Fletcher, G. Rampioni, C. Pustelny, K.
Rumbaugh, S. Heeb, M. Camara, A. Truman, S. R. Chhabra, J.
Emsley and P. Williams, PLoS Pathog, 2013, 9, e1003508.
21. F. J. Reen, S. L. Clarke, C. Legendre, C. M. McSweeney, K. S.
Eccles, S. E. Lawrence, F. O'Gara and G. P. McGlacken, Org
Biomol Chem, 2012, 10, 8903-8910.
22. E. C. Pesci, J. B. Milbank, J. P. Pearson, S. McKnight, A. S. Kende,
E. P. Greenberg and B. H. Iglewski, Proc Natl Acad Sci U S A,
1999, 96, 11229-11234.
23. P. Hradil, J. Hlavac and K. Lemr, J Heterocyclic Chem, 1999, 36,
141-144.
24. J. T. Hodgkinson, W. R. J. D. Galloway, S. Saraf, I. R. Baxendale,
S. V. Ley, M. Ladlow, M. Welch and D. R. Spring, Org Biomol
Chem, 2011, 9, 57-61.
25. J. Bergman, B. Pettersson, V. Hasimbegovic and P. H. Svensson, J
Org Chem, 2011, 76, 1546-1553.
26. P. Nanjan, J. Nambiar, B. G. Nair and A. Banerji, Bioorg Med
Chem, 2015, 23, 3781-3787.
27. J. I. Lee and M. J. Kim, B Korean Chem Soc, 2011, 32, 1383-1386.
28. H. J. Kabbe and A. Widdig, Angew Chem Int Ed, 1982, 21, 247-
256.
29. M. Ferrali, S. Bambagioni, A. Ceccanti, D. Donati, G. Giorgi, M.
Fontani, F. Laschi, P. Zanello, M. Casolaro and A. Pietrangelo, J
Med Chem, 2002, 45, 5776-5785.
30. H. Mikkelsen, R. McMullan and A. Filloux, PLoS One, 2011, 6,
e29113.
Notes and references
1. A. Oliver, R. Canton, P. Campo, F. Baquero and J. Blazquez,
Science, 2000, 288, 1251-1254.
2. G. P. Bodey, R. Bolivar, V. Fainstein and L. Jadeja, Rev Infect Dis,
1983, 5, 279-313.
3. V. Aloush, S. Navon-Venezia, Y. Seigman-Igra, S. Cabili and Y.
Carmeli, Antimicrob Agents Chemother, 2006, 50, 43-48.
4. T. Strateva and I. Mitov, Ann Microbiol, 2011, 61, 717-732.
5. B. Wretlind and O. R. Pavlovskis, Rev Infect Dis, 1983, 5 Suppl 5,
S998-1004.
6. R. S. Smith and B. H. Iglewski, Curr Opin Microbiol, 2003, 6, 56-
60.
7. M. Schuster and E. P. Greenberg, Int J Med Microbiol, 2006, 296,
73-81.
31. D. R. Galloway, Mol Microbiol, 1991, 5, 2315-2321.
32. S. Johnson, E. Barile, B. Farina, A. Purves, J. Wei, L. H. Chen, S.
Shiryaev, Z. Zhang, I. Rodionova, A. Agrawal, S. M. Cohen, A.
Osterman, A. Strongin and M. Pellecchia, Chem Biol Drug Des,
2011, 78, 211-223.
33. A. Agrawal, S. L. Johnson, J. A. Jacobsen, M. T. Miller, L. H. Chen,
M. Pellecchia and S. M. Cohen, ChemMedChem, 2010, 5, 195-
199.
34. A. L. Garner, A. K. Struss, J. L. Fullagar, A. Agrawal, A. Y. Moreno,
S. M. Cohen and K. D. Janda, ACS Med Chem Lett, 2012, 3, 668-
672.
8. M. A. Welsh and H. E. Blackwell, Cell Chem Biol, 2016, 23, 361-
369.
9. M. A. Welsh, N. R. Eibergen, J. D. Moore and H. E. Blackwell, J
Am Chem Soc, 2015, 137, 1510-1519.
10. Q. H. Christensen, T. L. Grove, S. J. Booker and E. P. Greenberg,
Proc Natl Acad Sci U S A, 2013, 110, 13815-13820.
11. T. Böttcher and S. A. Sieber, J Am Chem Soc, 2008, 130, 14400-
14401.
35. S. P. Diggle, S. Matthijs, V. J. Wright, M. P. Fletcher, S. R.
Chhabra, I. L. Lamont, X. Kong, R. C. Hider, P. Cornelis, M.
Camara and P. Williams, Chem Biol, 2007, 14, 87-96.
36. S. Hibino, E. Sugino, T. Choshi and K. Sato, J Chem Soc Perk T 1,
1988, 2429-2432.
37. G. R. Cathcart, D. Quinn, B. Greer, P. Harriott, J. F. Lynas, B. F.
Gilmore and B. Walker, Antimicrob Agents Chemother, 2011, 55,
2670-2678.
12. J. D. Moore, F. M. Rossi, M. A. Welsh, K. E. Nyffeler and H. E.
Blackwell, J Am Chem Soc, 2015, 137, 14626-14639.
13. S. McGrath, D. S. Wade and E. C. Pesci, FEMS Microbiol Lett,
2004, 230, 27-34.
14. E. Deziel, F. Lepine, S. Milot, J. He, M. N. Mindrinos, R. G.
Tompkins and L. G. Rahme, Proc Natl Acad Sci U S A, 2004, 101,
1339-1344.
38. N. Nishino and J. C. Powers, J Biol Chem, 1980, 255, 3482-3486.
39. B. V. Pillai and S. Swarup, Appl Environ Microbiol, 2002, 68, 143-
151.
40. M. J. van der Plas, R. K. Bhongir, S. Kjellstrom, H. Siller, G.
Kasetty, M. Morgelin and A. Schmidtchen, Nat Commun, 2016,
7, 11567.
41. Z. Kuang, Y. Hao, B. E. Walling, J. L. Jeffries, D. E. Ohman and G.
W. Lau, PLoS One, 2011, 6, e27091.
15. H. Huse and M. Whiteley, Chem Rev, 2011, 111, 152-159.
16. J. F. Dubern and S. P. Diggle, Mol Biosyst, 2008, 4, 882-888.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins