Paper
NJC
W. J. Walker and P. R. Bloom, Nature, 1986, 324, 140;
(d) G. Berthon, Coord. Chem. Rev., 2002, 228, 319; (e) D. R.
Burwen, S. M. Olsen, L. A. Bland, M. J. Arduino, M. H. Reid
and W. R. Jarvis, Kidney Int., 1995, 48, 469.
5 K. Soroka, R. S. Vithanage, D. A. Phillips, B. Walker and
P. K. Dasgupta, Anal. Chem., 1987, 59, 629.
6 (a) D. Maity and T. Govindaraju, Inorg. Chem., 2010, 49, 7229;
(b) D. Maity and T. Govindaraju, Chem. Commun., 2010,
46, 4499.
7 B. Valeur, Molecular Fluorescence: Principles and Applications,
Wiley-VCH Verlag GmbH, New York, 2001, ch. 10.
8 (a) G. Grynkiewicz, M. Poenie and R. Y. Tsien, J. Biol. Chem.,
1985, 260, 3440; (b) A. Minta and R. Y. Tsien, J. Biol. Chem.,
1989, 264, 19449; (c) E. Kimura and T. Koike, Chem. Soc.
Rev., 1998, 27, 179.
97.84, 105.17, 108.70, 118.23, 119.26, 119.72, 120.74, 123.51,
124.28, 128.14, 129.34, 134.44, 146.00, 146.41, 149.07, 151.65,
153.14, 164.03; ESI-MS: m/z calculated for C35H37N4O4 [M+H]+
(m/z): 577.28, found 577.6. Anal. calc. for C35H36N4O4: C, 73.02;
H, 6.36; N, 9.76; found: C, 72.90; H, 6.29; N, 9.72.
Synthesis of an L–Al3+ complex
A 5 mL methanolic solution of Al2(SO4)3ꢂ16H2O (0.054 g,
0.0867 mmol) was added dropwise to a magnetically stirred
solution (5 mL) of L (0.05 g, 0.0867 mmol) in methanol. The
color of the ligand solution changed from almost colorless to
deep magenta upon addition of Al2(SO4)3ꢂ16H2O. After two
hours of stirring at room temperature, the solution was dried
using a rotary evaporator which yielded a magenta L–Al3+
complex. The complex was characterized by mass spectral
1
studies, FT-IR and H NMR studies.
9 H. Kim, M. Lee, H. Kim, J. Kim and J. Yoon, Chem. Soc. Rev.,
2008, 37, 1465.
Crystallographic measurements
10 (a) T. Li, R. Fang, B. Wang, Y. Shao, J. Liu, S. Zhang and
Z. Yang, Dalton Trans., 2014, 43, 2741; (b) C.-H. Chen, D.-J.
Liao, C.-F. Wan and A.-T. Wu, Analyst, 2013, 138, 2527;
(c) S. H. Kim, H. S. Choi, J. Kim, S. J. Lee, D. T. Quang and
J. S. Kim, Org. Lett., 2010, 12, 560; (d) K. K. Upadhyay and
A. Kumar, Org. Biomol. Chem., 2010, 8, 4892; (e) Z.-C. Liao,
Z.-Y. Yang, Y. Li, B.-D. Wang and Q.-X. Zhou, Dyes Pigm.,
2013, 97, 124.
11 (a) S. B. Maity and P. K. Bharadwaj, Inorg. Chem., 2013,
52, 1161; (b) A. Dhara, A. Jana, S. Konar, S. K. Ghatak, S. Ray,
K. Das, A. Bandyopadhyay, N. Guchhait and S. K. Kar,
Tetrahedron Lett., 2013, 54, 3630; (c) C.-Y. Li, Y. Zhou, Y.-F.
Li, C.-X. Zou and X.-F. Kong, Sens. Actuators, B, 2013,
186, 360.
12 (a) U. Anthoni, C. Christophersen, P. Nielsen, A. Puschl and
K. Schaumburg, Struct. Chem., 1995, 3, 161; (b) Y. Xiang,
A. Tong, P. Jin and Y. Ju, Org. Lett., 2006, 8, 2863.
13 K. A. Connors, Binding Constants, Wiley, New York, 1987.
14 R. G. Paar and R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512.
15 W. C. Vosburgh and G. R. Copper, J. Am. Chem. Soc., 1941,
63, 437.
Measurements were done on a Bruker SMART APEX II CCD area
detector equipped with graphite monochromated Mo Ka radia-
tion (k = 0.71073 Å) source in o scan mode at 293 K. The
structures of the complexes were solved using the SHELXS-97
package of programs and refined by the full-matrix least square
technique based on F2 in SHELXL-97.21 All non-hydrogen atoms
were refined anisotropically. Positions of hydrogen atoms attached
to carbon atoms were fixed at their ideal position.
Acknowledgements
A. D. thanks CSIR, New Delhi, India, for financial support by
awarding a senior research fellowship (Sanc. No. 01(2401)/
10/EMR-II, dated 05.01. 2011).
References
1 For books and reviews: (a) A. W. Czarnik, Fluorescent
Chemosensors for Ion and Molecule Recognition, American
Chemical Society, Washington DC, 1993; (b) A. P. de Silva,
H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P.
McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997,
97, 1515; (c) B. Valeur and I. Leray, Coord. Chem. Rev., 2000,
16 G. L. Long and J. D. Winefordner, Anal. Chem., 1983,
55, 712A.
17 (a) K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyera and
D. Leupold, Photochem. Photobiol., 1993, 57, 465;
(b) W. Freyer, S. Dahne, L. Q. Minh and K. Teuchner,
Z. Chem., 1986, 26, 334; (c) H. Stiel, K. Teuchner, A. Paul,
W. Freyer and D. Leupold, J. Photochem. Photobiol., A, 1994,
80, 289.
´
´˜
´
205, 3; (d) R. Martınez-Manez and F. Sancenon, Chem. Rev.,
2003, 103, 4419; (e) J. F. Callan, A. P. de Silva and D. C.
Magri, Tetrahedron, 2005, 61, 8551; ( f ) L. Basabe-Desmonts,
D. N. Reinhoudt and M. Crego-Calama, Chem. Soc. Rev.,
2007, 36, 993.
18 (a) J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
Plenum, New York, 1999; (b) A. Jana, P. K. Sukul, S. K.
Mandal, S. Konar, S. Ray, K. Das, J. A. Golen, A. L. Rheingold,
S. Mondal, T. K. Mondal, A. R. K. Bukhsh and S. K. Kar,
Analyst, 2014, 139, 495.
2 (a) M. A. M. Rogers and D. G. Simon, Age Ageing, 1999,
28, 205; (b) T. P. Flaten and M. Ødegard, Food Chem.
Toxicol., 1988, 26, 959; (c) J. Ren and H. Tian, Sensors,
2007, 7, 3166; (d) R. A. Yokel, Neurotoxicology, 2000, 21, 813.
3 (a) J. Barcelo and C. Poschenrieder, Environ. Exp. Bot., 2002,
48, 75; (b) Z. Krejpcio and R. W. Pol Wojciak, J. Environ. 19 R. F. Kubin and A. N. Fletcher, J. Lumin., 1952, 455, 27.
Stud., 2002, 11, 251.
20 B. Bhattacharya, S. Nakka, L. Guruprasad and A. Samanta,
4 (a) G. D. Fasman, Coord. Chem. Rev., 1996, 149, 125;
J. Phys. Chem. B, 2009, 113, 2143.
(b) P. Nayak, Environ. Res., 2002, 89, 111; (c) C. S. Cronan, 21 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
1634 | New J. Chem., 2014, 38, 1627--1634
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014