Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC09236E
COMMUNICATION
Journal Name
1
20 s the stationary droplets then locomoted toward the light 10 T. Ban, T. Yamada, A. Aoyama, Y. Takagi and Y. Okano, Soft
Matter, 2012, 8, 3908.
source, i.e. positive phototaxis (Fig. S6a and Movie S4, ESI). Because
initial negative phototaxis also occurred when C8Azo was present,
the locomotion mode of the oil droplets transferred from negative
to positive against the UV irradiation. Under similar UV irradiation
1
1
1 I. Lagzi, S. Soh, P. J. Wesson, K. P. Browne and B. A.
Grzybowski, J. Am. Chem. Soc., 2010, 132, 1198.
2 J. M. P. Gutierrez, T. Hinkley, J. W. Taylor, K. Yanev and L.
Cronin, Nat. Commun., 2014, 5, 5571.
that induced the photoisomerization of C8Azo, HBA was slowly but 13 T. Banno, A. Asami, N. Ueno, H. Kitahata, Y. Koyano, K.
Asakura and T. Toyota, Sci. Rep., 2016,
4 N. J. Suematsu, Y. Mori, T. Amemiya and S. Nakata, J. Phys.
Chem. Lett. 2016, , 3424.
5 J. Berna, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M.
Perez, P. Rudolf, G. Teobaldi and F. Zerbetto, Nat. Mater.,
6, 31292.
steadily oxidized to n-heptyloxybenzcarboxylic acid (HBCA) at the
minute time-scale (Fig. S6b and S6c, ESI). In addition, the interfacial
tension between HBA and aqueous C16TAB solution was almost
constant over time without the UV irradiation, while it decreased
gradually over time upon UV irradiation (Fig. S6d, ESI). It has been
reported that the surface activities in a complex system composed
of a cationic surfactant and a fatty acid are higher than those in an
1
1
7
2005,
6 K. Ichimura, S.-K. Oh and M. Nakagawa, Science, 2000, 288
624.
7 S.-K. Oh, M. Nakagawa and K. Ichimura, J. Mater. Chem.,
002, 12, 2262.
of the positive phototaxis is not completely understood, we 18 L. Florea, K. Wagner, P. Wagner, G. G. Wallace, F. Benito-
4, 704.
1
1
,
1
29
individual surfactant system. Even though the precise mechanism
2
consider it to be a result of HBCA production at the minute time-
scale mainly at the droplet-side facing the UV irradiation because
HBA droplets do not transmit UV light. This molecular conversion
induces lowering the interfacial tension around the droplets, thus
gradually forming the flow fields that cause the positive phototaxis
of the droplets.
Lopez, D. L. Officer and D. Diamond, Adv. Mater., 2014, 26
339.
9 S. Nakata, T. Miyaji, Y. Matsuda, M. Yoshii and M. Abe,
Langmuir, 2014, 30, 7353.
0 A. Diguet, R. Guillermic, N. Magome, A. Saint-Jalmes, Y.
Chen, K. Yoshikawa and D. Baigl, Angew. Chem., Int. Ed.,
2009, 48, 9281.
,
7
1
2
2
2
1 K. Suzuki and T. Sugawara, ChemPhysChem, 2016, 17, 2300.
2 C. C. Maass, C. Krüger, S. Herminghaus and C. Bahr, Annu.
Rev. Condens. Matter Phys., 2016, 7, 171.
In conclusion, we have demonstrated the phototactic behavior
of micrometer-sized oil droplets in a far-from-equilibrium state
using photoresponsive surfactants. The controlled motion of
2
3 J. Y. Shin and N. L. Abbott, Langmuir, 1999, 15, 4404.
droplets was explained by heterogeneity in the interfacial tension at 24 T. Shang, K. A. Smith and T. A. Hatton, Langmuir, 2003, 19
,
the droplet surface that was induced by the molecular conversion
of system components. The negative phototaxis was very sensitive
and exhibited directional change within 0.5 s. Such sensitivity is
highly effective for applications in the spatial arrangement of
10764.
5 S. Dante, R. Advincula, C. W. Frank and P. Stroeve, Langmuir,
999, 15, 193.
6 I. Kim, J. F. Rabolt and P.Stroeve, Colloids Surf. A, 2000, 171
67.
In addition, 27 Y. Takahashi, K. Fukuyasu, T. Horiuchi, Y. Kondo and P.
2
2
1
,
1
1
7, 18
micrometer-sized objects and also as transporters.
the locomotion mode of oil droplets in the azo surfactant system
transferred from negative to positive against the UV irradiation over
time. Therefore, our emulsion system provides living-organism-
mimetic properties, such as the adaptation to an external stimulus,
Stroeve, Langmuir, 2014, 30, 41.
8 S. Thutupalli, R. Seemann and S. Herminghaus, New J. Phys.,
2
2
2
011, 13, 73021.
9 A. Stocco, D. Carriere, M. Cottat and D. Langevin, Langmuir
010, 26, 10663.
2
3
0‒32
in this case irradiation.
30 S. Kapoor, M. Berghaus, S. Suladze, D. Prumbaum, S.
Grobelny, P. Degen, S. Raunser and R. Winter, Angew.
Chem., Int. Ed., 2014, 53, 8397.
We thank Prof. Taro Toyota (Univ. of Tokyo), Prof. Hiroyuki
Kitahata and Ms. Yuki Koyano (Chiba Univ.) for the fruitful
discussions. This work was supported by a grant-in-aid for Scientific
Research for Young Scientists (B) (No. 16K17504) from the Ministry
of Education, Culture, Sports, Science and Technology of Japan.
3
1 R. K. Kumar, R. L. Harniman, A. J. Patil and S. Mann, Chem.
Sci., 2016, , 5879.
2 M. M. Hanczyc, Life, 2014,
7
3
4, 1038.
Notes and references
1
W. F. Paxton, S. Sundarajan, T. E. Mallouk and A. Sen, Angew.
Chem., Int. Ed., 2006, 45, 5420.
2
3
4
J. Wang and W. Gao, ACS Nano, 2012,
G. Zhao and M. Pumera, Chem. Asian. J., 2012,
G. Zhao, T. H. Seah and M. Pumera, Chem. Eur. J., 2011, 17
2020.
6, 5745.
7, 1994.
,
1
5
6
7
8
9
G. Zhao, S. Sanchez, O. G. Schmidt and M. Pumera, Chem.
Commun., 2012, 48, 10090.
B. Dai, J, Wang, Z. Xiong, X. Zhan, W. Dai, C.-C. Li, S.-P. Feng
and J. Tang, Nat. Nanotechnol., 2016, 11, 1087.
M. M. Hanczyc, T. Toyota, T. Ikegami, N. Packard and T.
Sugawara, J. Am. Chem. Soc. 2007, 129, 9386.
T. H. Seah, G. Zhao and M. Pumera, ChemPlusChem, 2013, 78
395.
J. Čejková, M. Novák, F. Štěpánek and M. M. Hanczyc,
Langmuir, 2014, 30, 11937.
,
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins