198
A. M. ASHMAWY ET AL.
sample, by using 500 ppm after 24 hr, but this compound showed less efficiency compared
with I18d at 48, 72, and 96 hr.
The results obtained after 24 hr from 18a using 100 ppm, after 48 hr from 18b using
500 ppm and from 18d after 96 hr using 250 ppm are the same (TAN 0.35 mg KOH/g
sample). But, although it is more economical to use low concentration from the additive
added, it is more efficient to use high concentration to run more operating time. So the 18d
is more efficient because it gave the same results after long operating period.
Conclusions
The results obtained in this work indicate the following:
1. Four prepared compounds had properties of LCs.
2. In our study, LCs give more efficiency as antioxidant.
3. The prepared antioxidants proved to be successful in enhancing the oxidation stability
of the base stock.
4. The above (total acid number) data reveal that the most effective concentration is
500 ppm.
5. From the previous data we noted that the inhibition efficiency of the two prepared
antioxidants is ranked as follows: I18d > I18c> I18b > I18a.
References
[1] Johnson, M. D., Korcek, S., & Zinbo, M. (1987). Ind. Eng. Chem. Res., 26, 1754.
[2] Naidu, S. K., Klaus, E. E., & Duda, J. L. (1984). Ind. Eng. Chem. Prod. Res. Dev., 23, 613.
[3] Egharevba, F. & Maduako, A. U. (2002). Ind. Eng. Chem. Res., 41, 3473.
[4] Abner, E. & Booser, E. R. (1983). Lubricant deterioration in service. In CRC Handbook of Lubri-
cation, CRC Press Inc: Boca Raton, 1, 517.
[5] Offunne, G., Maduako, A., & Ojinnaka, C. (1989). Tribol. Int., 22, 401.
[6] Ofunne, G., Maduako, A., & Ojinnaka, C. (1990). Tribol. Int., 23, 407.
[7] Klaus, E., Cho, L., & Dang, H. (1980). Soc. Automotive Eng. Tech., 801362.
[8] Carrion, F. J., Martínez, N. G., Iglesias, P., Sanes, J., & Bermúdez, M. D. (2009). Int. J. Mol. Sci., 10,
4102.
[9] Bermúdez, M. D., Brostow, W., Carrión, F. J., Cervantes, J. J., & Pietkiewicz, D. (2005). Polymer,
46, 347.
[10] Hirose, T., Takai, H., Watabe, M., Minamikawa, H., Tachikawa, T., Kodama, K., & Yasutake, M.
(2014). Tetrahedron, 70, 5100.
[11] Nessim, R. I., Naoum, M. M., Mohamed, S. Z., & Nessim, M. I. (2004). Liq. Cryst., 31, 649.
[12] Biresaw, G. & Zadnik, D. (1989). Tribology & The Liquid-Crystalline State (ACS Symposium Series
441), American Chemical Society: Washington, DC, USA, 83.
[13] Bermúdez, M. D., Martínez, N. G., & Carrion, F. J. (1997). Wear, 212, 188.
[14] Mori, S. & Iwata, H. (1996). Tribol. Int., 29, 35.
[15] Kimura, Y., Nakano, K., Kato, T., & Morishita, S. (1994). Wear, 175, 143.
[16] Shen, M., Luo, J., Wen, S., & Yao, J. (2002). Tribol. Lubr. Technol., 58, 18.
[17] Nakano, K. (2003). Tribol. Int., 14, 17.
[18] Iglesias, P., Bermúdez, M. D., Carrion, F. J., & Martınez, N. G. (2004). Wear, 256, 386.
[19] Naoum, M. M., Saad, G. R., Nessim, R. I., Abdel-Aziz, T. A., & Seliger, H. (1997). Liq. Cryst., 23,
789.
[20] Nessim, M. I., Bassoussi, A. A., Osman, D. I., Khalil, H. F., & Ashmawy, A. M. (2014). Int. J. Curr.
Res., 6, 9203.
[21] Mohammady, S. Z., Nessim, R. I., Shehab, O. R., & Naoum, M. M. (2005). Liq. Cryst., 32, 477.
[22] Omrani, H., Dudelzak, A. E., Hollebone, B. P., & Loock, H. P. (2014). Anal. Chim. Acta., 811, 1.
[23] Rashed, M. A., Kalam, M. A., Masjuki, H. H., Rashedul, H. K., Ashraful, A. M., Shancita, I., &
Ruhul, A. M. (2015). RSC Advances, 5, 36240.