10.1002/anie.201708454
Angewandte Chemie International Edition
COMMUNICATION
Vomacka, C. Fetzer, M. Lakemeyer, A. Fux, S. A. Sieber, J Proteome
Res 2017, 16, 1180-1192.
of wt S. aureus with 334 resulted in reduced expression of
extracellular toxins and proteases and in an increased production
of adhesins (Figure 3D). The effect of 334 on the level of virulence
factor expression was largely comparable to that observed after
genetic deletion of ClpX (Figure 3D). Therefore, the significant
overlap of 130 proteins with changes in overall abundance (of
which 84 are regulated in the same direction) induced by 334 with
those induced by the genetic deletion of ClpX suggested, at least
in part, an inhibitory effect on ClpX (Figure 3E). Interestingly, 334
also significantly affected the expression of virulence factors and
other proteins in the ΔclpX mutant (Figure 3D and 3E). These
findings indicate that 334 could address additional targets that
further enhance the inhibitory effect on the production of
extracellular virulence factors by ClpX. Due to the restrictions of
334 for application in chemical proteomics as discussed above,
assessing the direct effect of the compound on key regulators
within the agr system will constitute the most straightforward way
for the identification of these putative targets in future studies.
In conclusion, we introduced the first reversible inhibitor of ClpX,
which retained activity against the whole proteolytic ClpXP
complex, a superior trait compared to previous reversible ClpP
binders. In addition, global transcriptome and proteome analysis
pointed towards targeting of ClpXP also in living cells. Accordingly,
a reduction of virulence expression was detected via classical
assays and more comprehensively with a MS platform allowing
reliable in situ toxin monitoring. Given the susceptibility of the
ΔclpX mutant strain towards 334 we anticipate that other cellular
virulence pathways may be directly or indirectly addressed. This
opens an intriguing perspective of a multifaceted virulence
reduction effective also for MRSA strains.
[5]
[6]
[7]
D. Frees, S. N. Qazi, P. J. Hill, H. Ingmer, Mol Microbiol 2003, 48, 1565-
1578.
a) R. T. Sauer, T. A. Baker, Annu Rev Biochem 2011, 80, 587-612; b) Z.
Maglica, K. Kolygo, E. Weber-Ban, Structure 2009, 17, 508-516.
a) L. Cheng, T. A. Naumann, A. R. Horswill, S. J. Hong, B. J. Venters, J.
W. Tomsho, S. J. Benkovic, K. C. Keiler, Protein Sci 2007, 16, 1535-
1542; b) S. M. McGillivray, D. N. Tran, N. S. Ramadoss, J. N. Alumasa,
C. Y. Okumura, G. Sakoulas, M. M. Vaughn, D. X. Zhang, K. C. Keiler,
V. Nizet, Antimicrob Agents Chemother 2012, 56, 1854-1861.
a) T. Böttcher, S. A. Sieber, J Am Chem Soc 2008, 130, 14400-14401;
b) F. Weinandy, K. Lorenz-Baath, V. S. Korotkov, T. Bottcher, S. Sethi,
T. Chakraborty, S. A. Sieber, ChemMedChem 2014, 9, 710-713.
A. Pahl, et al., Angew Chem Int Ed Engl 2015, 54, 15892-15896.
[8]
[9]
[10] Y. I. Kim, R. E. Burton, B. M. Burton, R. T. Sauer, T. A. Baker, Mol Cell
2000, 5, 639-648.
[11] P. P. Geurink, L. M. Prely, G. A. van der Marel, R. Bischoff, H. S.
Overkleeft, Top Curr Chem 2012, 324, 85-113
[12] J. A. Vizcaíno, et al., Nucleic Acids Res 2016, 44, D447–D456.
Acknowledgements
This work was funded by the DFG (SI1096/8-1) and the Center
for Integrated Protein Science Munich. K. M. L. thanks the Korea
Research Institute of Chemical Technology. We thank Dorte
Frees for providing 8325-4 wt and ΔclpX strains. We also thank
Carola Seyffarth and Jessica Pryzgodda (FMP Berlin) for
realization of the HTS, Katja Bäuml and Mona Wolff for excellent
technical assistance, Melina Vollmer and Theresa Rauh for help
with experiments and Markus Lakemeyer and Matthias Stahl for
critical proofreading. The MS data have been deposited to the
ProteomeXchange Consortium via the PRIDE[12] partner
repository with the dataset identifier PXD007259.
Keywords: Antivirulence • high-throughput screening •
proteolysis • proteomics • Staphylococcus aureus
[1]
[2]
[3]
F. D. Lowy, N Engl J Med 1998, 339, 520-532.
A. Zecconi, F. Scali, Immunol Lett 2013, 150, 12-22.
a) A. E. Clatworthy, E. Pierson, D. T. Hung, Nat Chem Biol 2007, 3, 541-
548; b) C. I. Liu, G. Y. Liu, Y. Song, F. Yin, M. E. Hensler, W. Y. Jeng, V.
Nizet, A. H. Wang, E. Oldfield, Science 2008, 319, 1391-1394; c) D. A.
Rasko, V. Sperandio, Nat Rev Drug Discov 2010, 9, 117-128.
a) D. Frees, K. Sorensen, H. Ingmer, Infect Immun 2005, 73, 8100-8108;
b) A. Michel, F. Agerer, C. R. Hauck, M. Herrmann, J. Ullrich, J. Hacker,
K. Ohlsen, J Bacteriol 2006, 188, 5783-5796; c) J. Krysiak, M. Stahl, J.
[4]
This article is protected by copyright. All rights reserved.