4
780
T. Matsuda et al. / Tetrahedron Letters 52 (2011) 4779–4781
Table 1
Gold-catalyzed homocoupling of aryl- and alkenylboronic acids 1
Table 2
a
a
Homocoupling of arylboronic esters and arylborates
Entry Arylboron compound
Biaryl
Yieldb with
2
AuCl
%)
NaAuCl
(%)
4
ꢀ2H
2
O
(
Yieldb with
NaAuCl
1
2
(3b)
2b
81
69
82
70
Entry
1 (R)
AuCl (%)
4
ꢀ2H
2
O (%)
(4b) 2b
1
2
3
4
5
6
7
8
9
1b (4-MeC
6
H
4
)
79
68
77
43
35
32
70
36
20
14
55
21
8
79 (75c)
72
1c (4-t-BuC
1d (3-MeC
1e (2-naphthyl)
1f (2-MeC
1g (4-MeOC
1h (3-MeOC
1i (4-F CC
1j (4-NCC
1k (3-AcC
1l (4-FC
1m (3-BrC
1n (4-IC
6
H
4
)
d
6
H
4
)
79 (61 )
47
39
49
75
50
23
3
(5b)
2b
59
61
6
4
H )
6
4
H )
6
H
4
)
4
5
6
PhBF
4-t-BuC
NaBPh
3
K (6a)
BF
(7a)
2a
2c
2a
50
22
34
64
28
44
H
4
3
K (6c)
3
6
H
4
)
6
b
b
6
H
4
)
4
e
10
11
12
13
14
15
6
H
4
)
11 (16 )
a
Arylboron compound was reacted in EtOH (0.125 M) under air at 50 °C for 24 h
in the presence of Au salt (5 mol %) and K CO (1.0–1.1 equiv).
6
H
4
)
56
24 (14 )
e
2
3
6
H
4
)
b
Isolated yield by preparative TLC. Yield based on the four phenyl groups of 7a.
6
H
4
)
13
70
26
1o (trans-b-styryl)
1p (1-phenylvinyl)
62
21
and (3) while the filtrate from the reaction mixture had virtually
no catalytic activity, the homocoupling could be successfully re-
peated using the filtration residue.
In summary, a facile method has been developed for the oxida-
tive homocoupling reaction of arylboronic acids catalyzed by gold.
The reaction conditions were also applied to the homocoupling of
alkenylboronic acids, arylboronic esters, and arylborates.
a
Unless otherwise noted, boronic acid 1 was reacted in EtOH (0.125 M) under air
at 50 °C for 24 h in the presence of Au salt (5 mol %) and K
2
CO
3
(1.0–1.1 equiv).
b
Isolated yield by preparative TLC.
Reaction was performed with 1 mol % of Au salt.
Reaction was performed at rt.
Reaction was performed in refluxing EtOH.
c
d
e
References and notes
4
-position were sluggish and gave the corresponding biaryls 2i–k in
14
yields below 50% (entries 8–10). In these cases, the remainder of
the mass balance comprised both unreacted 1 and a protodeboro-
nated arene. While the homocoupling of 4-fluorophenylboronic acid
1.
(a) Cepanec, I. Synthesis of Biaryls; Elsevier: Amsterdam, 2004; (b) Bringmann,
G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977; (c) Hassan,
J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359;
(
d) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253; (e) Alberico, D.;
(1l) gave biaryl 2l in 55–56% yields (entry 11), the reaction of 3-bro-
Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; (f) Ashenhurst, J. A. Chem.
Soc. Rev. 2010, 39, 540.
mo and 4-iodo derivatives (1m and 1n) resulted in the formation of
the corresponding biaryls with diminished yields (8–24%) (entries
1
acids also participated in the homocoupling reaction. For example,
trans-b-styrylboronic acid (1o) underwent gold-catalyzed homo-
coupling to afford 1,4-diphenylbuta-1,3-diene (2o) in 62–70% yields
2. (a) Stanforth, S. P. Tetrahedron 1998, 54, 263; (b) Suzuki, A. J. Organomet. Chem.
999, 576, 147; (c) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419; (d)
2 and 13). In addition to arylboronic acids,15 the alkenylboronic
1
Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704; (e)Metal-
Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds., second ed;
Wiley-VCH: Weinheim, 2004.
3.
(a) Ghosal, S.; Luke, G. P.; Kyler, K. S. J. Org. Chem. 1987, 52, 4296; (b) Inoue, A.;
Kitagawa, K.; Shinokubo, H.; Oshima, K. Tetrahedron 2000, 56, 9601; (c) Piers,
E.; Yee, J. G. K.; Gladstone, P. L. Org. Lett. 2000, 2, 481; (d) Demir, A. S.; Reis, Ö.;
Emrullahoglu, M. J. Org. Chem. 2003, 68, 578.
(
entry 14). 2,3-Diphenylbuta-1,3-diene (2p) was obtained from 1p
in low yields, presumably because of steric hindrance from the phe-
nyl group at 1-position of the vinyl group of 1t (entry 15). The homo-
coupling reaction was also found to be amenable to the gram-scale
synthesis of biaryls. For example, 1.31 g (8.5 mmol, 68%) of 2a was
prepared from the reaction of 3.05 g (25 mmol) of 1a with 1 mol %
4. Mao, J.; Hua, Q.; Xie, G.; Yao, Z.; Shi, D. Eur. J. Org. Chem. 2009, 2262.
5.
(a) Miyake, Y.; Wu, M.; Rahman, M. J.; Iyoda, M. Chem. Commun. 2005, 411; (b)
Krasovskiy, A.; Tishkov, A.; del Amo, V.; Mayr, H.; Knochel, P. Angew. Chem., Int.
Ed. 2006, 45, 5010; (c) Maji, M. S.; Pfeifer, T.; Studer, A. Angew. Chem., Int. Ed.
2008, 47, 9547.
6.
(a) Moreno-Mañas, M.; Pérez, M.; Pleixats, R. J. Org. Chem. 1996, 61, 2346; (b)
Smith, K. A.; Campi, E. M.; Jackson, W. R.; Marcuccio, S.; Naeslund, C. G. M.;
Deacon, G. B. Synlett 1997, 131; (c) Wong, M. S.; Zhang, X. L. Tetrahedron
Lett. 2001, 42, 4087; (d) Lei, A.; Zhang, X. Tetrahedron Lett. 2002, 43, 2525;
4 2
NaAuCl ꢀ2H O.
Similar to arylboronic acids, arylboronic esters and arylborates
can also be used as substrates for the gold-catalyzed homocoupling
reaction (Table 2). Biaryl 2b was obtained in good yields from the
reaction of p-tolylboronic acid ethylene glycol ester (3b) (entry 1).
Neopentyl glycol and pinacol esters (4b and 5b, respectively) gave
(
e) Kabalka, G. W.; Wang, L. Tetrahedron Lett. 2002, 43, 3067; (f) Koza, D. J.;
Carita, E. Synthesis 2002, 2183; (g) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung,
K. W. Tetrahedron Lett. 2002, 43, 7899; (h) Klingensmith, L. M.; Leadbeater,
N. E. Tetrahedron Lett. 2003, 44, 765; (i) Yoshida, H.; Yamaryo, Y.; Ohshita, J.;
Kunai, A. Tetrahedron Lett. 2003, 44, 1541; (j) Punna, S.; Díaz, D. D.; Finn, M.
G. Synlett 2004, 2351; (k) Cravotto, G.; Beggiato, M.; Penoni, A.; Palmisano,
G.; Tollari, S.; Lévêque, J.-M.; Bonrath, W. Tetrahedron Lett. 2005, 46, 2267; (l)
Yamamoto, Y.; Suzuki, R.; Hattori, K.; Nishiyama, H. Synlett 2006, 1027; (m)
Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3184; (n) Adamo, C.; Amatore,
C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am. Chem. Soc. 2006, 128, 6829; (o)
Yadev, J. S.; Gayathri, K. U.; Ather, H.; Ur Rehman, H.; Prased, A. R. J. Mol.
Catal. A: Chem. 2007, 271, 25; (p) Zhou, L.; Xu, Q. X.; Jiang, H. F. Chin. Chem.
Lett. 2007, 18, 1043; (q) Cheng, K.; Xin, B.; Zhang, Y. J. Mol. Catal. A: Chem.
2007, 273, 240; (r) Mitsudo, K.; Shiraga, T.; Tanaka, H. Tetrahedron Lett. 2008,
2
b with yields ranging from 59% to 70% (entries 2 and 3). Under
similar conditions, aryltrifluoroborates 6a and 6c showed reduced
reactivity (entries 4 and 5).16 Even tetraphenylborate 7a was con-
verted to 2a in the presence of the gold salts (entry 6).17
Although the detailed mechanism of the gold-catalyzed homo-
coupling reaction has not been fully elucidated,1 on the basis of
8
the results described below, we assume that the present reaction
is catalyzed by heterogeneous gold19 and that molecular oxygen
4
9, 6593; (s) Xu, Z.; Mao, J.; Zhang, Y. Catal. Commun. 2008, 9, 97; (t) Chen,
acts as a reoxidant: (1) the efficiency of the reaction significantly
deteriorated (20% yield for the conversion of 1a–2a) when per-
formed under an argon atmosphere and otherwise identical condi-
tions; (2) the formation of phenol derivatives was observed in
some cases with arylboronic acids bearing electron-donating
J.-S.; Krogh-Jespersen, K.; Khinast, J. G. J. Mol. Catal. A: Chem. 2008, 285, 14;
(u) Burns, M. J.; Fairlamb, I. J. S.; Kapdi, A. R.; Sehnal, P.; Taylor, R. J. K. Org.
Lett. 2007, 9, 5397; (v) Jin, Z.; Guo, S.-X.; Gu, X.-P.; Qiu, L.-L.; Song, H.-B.;
Fang, J.-X. Adv. Synth. Catal. 2009, 351, 1575; (w) Mu, B.; Li, T.; Fu, Z.; Wu, Y.
Catal. Commun. 2009, 10, 1497; (x) Ciric, A.; Mathey, F. Organometallics 2010,
29, 4785; (y) Prastaro, A.; Ceci, P.; Chiancone, E.; Boffi, A.; Fabrizi, G.; Cacchi,
S. Tetrahedron Lett. 2010, 51, 2550.
2
0
groups (18% yield of 3-methoxyphenol for the reaction of 1h);