Organic Letters
Letter
(b) Zhang, H.; Karasawa, T.; Yamada, H.; Wakamiya, A.; Yamaguchi,
S. Org. Lett. 2009, 11, 3076.
(7) (a) Li, H.; Wang, X.-Y.; Wei, B.; Xu, L.; Zhang, W.-X.; Pei, J.; Xi,
Z. Nat. Commun. 2014, 5, 4508. (b) Li, H.; Wei, B.; Wu, L.; Zhang,
W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2013, 125, 11022.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details, characterization of all the products, DFT
results, oxidation and reduction potentials, and crystallographic
data for 1b (CIF, CCDC 1011864). The Supporting
(8) (a) Babu, G.; Orita, A.; Otera, J. Chem. Lett. 2008, 37, 1296.
(b) Xu, F.; Peng, L.; Orita, A.; Otera, J. Org. Lett. 2012, 14, 3970. For
nucleophilic substitution of halopentalenes: (c) Xu, F.; Peng, L.;
Wakamatsu, K.; Orita, A.; Otera, J. Chem. Lett. 2014, 43, 1548.
(9) Triazapentalene; Namba, K.; Mera, A.; Osawa, A.; Sakuda, E.;
Kitamura, N.; Tanino, K. Org. Lett. 2012, 14, 5554. See refs 4b, f for
dianthracenopentalenes.
(10) For syntheses of Sondheimer−Wong diynes (a) Xu, F.; Peng,
L.; Shinohara, K.; Morita, T.; Yoshida, S.; Hosoya, T.; Orita, A.; Otera,
J. J. Org. Chem. 2014, 79, 11592. (b) Chaffins, S.; Brettreich, M.; Wudl,
F. Synthesis 2002, 1191. (c) Man, Y.-M.; Mak, T. C. W.; Wong, H. N.
C. J. Org. Chem. 1990, 55, 3214. (d) Wong, H. N. C.; Garratt, P. J.;
Sondheimer, F. J. Am. Chem. Soc. 1974, 96, 5604.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
(11) Nuclephilic substitution of hydrogen in aromatic compounds
was reported. (a) Terrier, F. Nucleophilic Aromatic Displacement; Verlag
Chemie, Weinheim, 1991. (b) Chupakhin, O. N.; Charushin, V. N.;
van der Plas, H. C. Nucleophilic Aromatic Substitution of Hydrogen;
Academic Press: San Diego, CA, 1994. (c) Makosza, M.;
Wojciechowski, K. Chem. Rev. 2004, 104, 2631.
(12) When naphthalenecarboaldehyde was treated with commercially
available LiH (Alderich or TCI), no formation of 2-naphthylmethanol
was observed. Similar results had been reported by Ashby: LiH which
was freshly prepared from hydrogenolysis of t-BuLi could reduce
benzophenone although commercial LiH did not. Ashby, E. C.;
Noding, S. A. J. Org. Chem. 1980, 45, 1041.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Organic Synthesis based on
Reaction Integration. Development of New Methods and
Creation of New Substances” (No. 2105), a matching fund
subsidy for private universities from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, JSPS through
its “Funding Program for World-Leading Innovative R&D on
Science and Technology (FIRST Program)” and KAKENHI
(15K05440), and Okayama Prefecture Industrial Promotion
Foundation.
(13) When 14 was treated with LDA, the formation of 7 was
observed on TLC analysis, but the isolation of 7 was unsuccessful
because of its poor solubility.
(14) For reviews of space-integrated one-pot reactions: (a) Yoshida,
J.; Saito, K.; Nokami, T.; Nagaki, A. Synlett 2011, 1189. (b) Suga, S.;
Yamada, D.; Yoshida, J. Chem. Lett. 2010, 39, 404.
(15) Oxidation and reduction potentials electrochemically recorded
for 1c-f, 3a, and 11 were shown in the Supporting Information.
(16) Calculations of NICS(1) values for dinaphthopentalene
presented 2.5 for the pentalene core and −7.1 and −10.0 for the
naphtho moieties.
REFERENCES
■
(1) For recent reviews (a) Marzano, G.; Ciasca, C. V.; Babudri, F.;
Bianchi, G.; Pellegrino, A.; Po, R.; Farinola, G. M. Eur. J. Org. Chem.
2014, 6583. (b) Zoppi, L.; Martin-Samos, L.; Baldridge, K. K. Acc.
Chem. Res. 2014, 47, 3310. (c) Praveen, V. K.; Ranjith, C.; Bandini, E.;
Ajayaghosh, A.; Armaroli, N. Chem. Soc. Rev. 2014, 43, 4222.
(d) Dumur, F.; Goubard, F. New J. Chem. 2014, 38, 2204.
(e) Baumgartner, T. Acc. Chem. Res. 2014, 47, 1613. (f) Takimiya,
K.; Osaka, I.; Mori, T.; Nakano, M. Acc. Chem. Res. 2014, 47, 1493.
(g) Bessette, A.; Hanan, G. S. Chem. Soc. Rev. 2014, 43, 3342.
(2) Rosenberg, M.; Dahlstrand, C.; Kilsa, K.; Ottosson, H. Chem. Rev.
̊
2014, 114, 5379.
(3) For reviews: (a) Kawase, T.; Nishida, J-i. Chem. Rec. DOI:
(4) For selected papers of transition-metal-catalyzed synthesis:
(a) Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc. 2010, 132, 11012.
(b) Dai, G.; Chang, J.; Zhang, W.; Bai, S.; Huang, K.-W.; Xu, J.; Chi, C.
Chem. Commun. 2015, 51, 503. (c) Katsumoto, K.; Kitamura, C.;
Kawase, T. Eur. J. Org. Chem. 2011, 4885. (d) Kawase, T.; Fujiwara, T.;
Kitamura, C.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo,
T.; Shinamura, S.; Mori, H.; Miyazaki, E.; Takimiya, K. Angew. Chem.,
Int. Ed. 2010, 49, 7728. (e) Maekawa, T.; Segawa, Y.; Itami, K. Chem.
Sci. 2013, 4, 2369. (f) Shen, J.; Yuan, D.; Qiao, Y.; Shen, X.; Zhang, Z.;
Zhong, Y.; Yi, Y.; Zhu, X. Org. Lett. 2014, 16, 4924. (g) Kawase, T.;
Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T.
Chem.−Eur. J. 2009, 15, 2653. (h) Zhao, J.; Oniwa, K.; Asao, N.;
Yamamoto, Y.; Jin, T. J. Am. Chem. Soc. 2013, 135, 10222.
(5) (a) Saito, M.; Hashimoto, Y.; Tajima, T.; Ishimura, K.; Nagase,
S.; Minoura, M. Chem.Asian J. 2012, 7, 480. (b) Saito, M.;
Nakamura, M.; Tajima, T. Chem.Eur. J. 2008, 14, 6062. (c) Saito,
M.; Nakamura, M.; Tajima, T.; Yoshioka, M. Angew. Chem. Int. Ed.
2007, 46, 1504.
(6) (a) Chen, C.; Harhausen, M.; Liedtke, R.; Bussmann, K.;
Fukazawa, A.; Yamaguchi, S.; Petersen, J. L.; Daniliuc, C. G.; Frohlich,
̈
R.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2013, 52, 5992.
3017
Org. Lett. 2015, 17, 3014−3017