1
3
these days. In these reactions, the zwitterionic intermediate,
generated by addition of a phosphine to an allenoate, is
represented as 3 T 4 (Scheme 1). This zwitterionic inter-
ester group in 9 facilitates intramolecular lactonization and
results in the synthesis of 6-substituted 2-pyrone 11.
The Z-isomer 3 T 4 is favored due to the electrostatic
association between the dienolate oxygen anion and the
phosphonium cation. Consequently, we speculated that a
dominant steric bias would be needed to shift the equilibrium
toward E-isomer 5 T 6. In practice, sterically demanding
trialkylphosphines were used to shift the equilibrium toward
E-isomer 5 T 6 and led to the formation of 6-substituted
1
7
Scheme 1. Equilibrium of E- and Z-Isomers of the
Zwitterionic Intermediate Formed by the Addition of a
Phosphine to an Allenoate
2
-pyrones (Table 1, entries 1-3). Extremely bulky tri(tert-
butyl)phosphine produced no product (Table 1, entry 4), and
triphenylphosphine provided only 24% of product (Table 1,
entry 5). Tributylphosphine did not render any pyrone
formation (Table 1, entry 6). When the most efficient
tricyclopentylphosphine was used, ethyl allenoate, among
alkyl allenoates, provided the highest yield of pyrone (Table
1
(
, entries 7-11). Phenyl allenoate provided no product
Table 1, enytry 12). We speculate that this is due to the
diminished basicity of phenoxide, in comparison to alkoxides,
(11) (a) Rousset, S.; Abarbi, M.; Thibonnet, J.; Parrain, J.; Duch eˆ ne, A.
Tetrahedron Lett. 2003, 44, 7633. (b) Louie, J.; Gibby, J. E.; Farnworth,
M. V.; Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188. (c) Thibonnet,
J.; Abarbi, M.; Parrain, J.; Duch eˆ ne, A. J. Org. Chem. 2002, 67, 3941. (d)
Rossi, R.; Bellina, F.; Biagetti, M.; Catanese, A.; Mannina, L. Tetrahedron
Lett. 2000, 41, 5281. (e) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem.
1
999, 64, 8770. (f) Reference 7. (g) Ogawa, Y.; Maruno, M.; Wakamatsu,
T. Heterocycles 1995, 41, 2587. (h) Liebeskind, L. S.; Wang, J. Tetrahedron
993, 49, 5461. (i) Tsuda, T.; Morikawa, S.; Saegusa, T. J. Chem. Soc.,
Chem. Commun. 1989, 9. (j) Cho, S. K.; Liebskind, L. S. J. Org. Chem.
1
1
987, 52, 2631. (k) Henry, W.; Hughes, R. P. J. Am. Chem. Soc. 1986,
108, 7862. (l) Inoue, Y.; Itoh, Y.; Kazama, H.; Hashimoto, H. Bull. Chem.
Soc. Jpn. 1980, 53, 3329.
12) Ethyl allenoate can also be easily prepared by a reaction between
(
1
4
mediate adds to imines exclusively at its R carbon, to
acid chloride and (carboetoxymethylene)triphenylphosphorane in the pres-
ence of triethylamine; see: Lang, R. W.; Hansen, H.-J. Organic Syntheses;
Wiley: New York, 1990; Collect. Vol. VII, pp 232-235.
1
5
electron-deficient alkenes preferably at its R carbon, and
16
to aldehydes exclusively at its γ carbon. Nevertheless, the
alternative E-isomeric zwitterionic intermediate, 5 T 6, has
not been previously considered. The E- or Z-geometric
information is lost when the zwitterionic intermediate reacts
at the R carbon. However, when the addition occurs at the
γ carbon as with an aldehyde the geometric distinction in
the zwitterionic intermediate is conserved in the resulting
adduct (see 8 and 9). Thus, intermediate 8 incorporates
another equivalent of aldehyde and produces dioxanylidene
(
13) For a review, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res.
2
001, 34, 535. For phosphine-catalyzed reactions, see: (b) Jung, C.-K.;
Wang, J.-C.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4118. (c) Wang,
J.-C.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855. (d) Wang,
J.-C.; Ng, S.-S.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 3682. (e)
Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716. (f) Du,
Y.; Lu, X. J. Org. Chem. 2003, 68, 6463. (g) Kuroda, H.; Tomita, I.; Endo,
T. Org. Lett. 2003, 5, 129. (h) Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002,
67, 8901. (i) Lu, C.; Lu, X. Org. Lett. 2002, 4, 4677. (j) Lu, B.; Davis, R.;
Joshi, B.; Reynolds, D. W. J. Org. Chem. 2002, 67, 4595. (k) Ung, A. T.;
Schafer, K.; Lindsay, K. B.; Pyne, S. T.; Amornraksa, K.; Wouters, R.;
Van der Linden, I.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White,
A. H. J. Org. Chem. 2002, 67, 227. (l) Kumar, K.; Kapoor, R.; Kapur, A.;
Ishar, M. P. S. Org. Lett. 2000, 2, 2023 (m) Kumar, K.; Kapur, A.; Ishar,
M. P. S. Org. Lett. 2000, 2, 787. (n) Trost, B. M.; Dake, G. R. J. Am.
Chem. Soc. 1997, 119, 7595. (o) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.;
Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836. For amine-catalyzed
reactions, see: (p) Zhao, G.; Huang, J.; Shi, M. Org. Lett. 2003, 5, 4737.
(q) Evans, C. A.; Miller, S. J. J. Am. Chem. Soc. 2003, 125, 12394.
(14) (a) Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461. (b) Xu, Z.;
Lu, X. J. Org. Chem. 1998, 63, 5031. (c) Zhu, X.-F.; Henry, C. E.; Kwon,
O. Tetrahedron 2005, in press.
1
0. The close proximity of the alkoxide with respect to the
(
9) Sato, H.; Konoma, K.; Sakamura, S. Agric. Biol. Chem. 1981, 45,
675.
10) For the synthesis of 6-substituted 2-pyrones, see: (a) Komiyama,
T.; Takaguchi, Y.; Tsuboi, S. Tetrahedron Lett. 2004, 45, 6299. (b) Sheibani,
H.; Islami, M. R.; Khabazzadeh, H.; Saidi, K. Tetrahedron 2004, 60, 5931.
1
(
(
c) Ma, S.; Yu, S.; Yin, S. J. Org. Chem. 2003, 68, 8996. (d) Yao, T.;
Larock, R. C. J. Org. Chem. 2003, 68, 5936. (e) Biagetti, M.; Bellina, F.;
Carpita, A.; Rossi, R. Tetrahedron Lett. 2003, 44, 607. (f) Anastasia, L.;
Xu, C.; Negishi, E. Tetrahedron Lett. 2002, 43, 5673. (g) Kotretsou, S. I.;
Georgiadis, M. P. Org. Prep. Proc. Int. 2000, 32, 161. (h) Tidwell, T. T.;
Sammtleben, F.; Christl, M. J. Chem. Soc., Perkin Trans. 1 1998, 2031. (i)
Kepe, V.; Polanc, S.; Kocevar, M. Heterocycles 1998, 48, 671. (j) Dubuffet,
T.; Cimetiere, B.; Lavielle, G. Synth. Commun. 1997, 27, 1123. (k) Svete,
J.; Cadez, Z.; Stanovnik, B.; Tisler, M. Synthesis 1990, 70. (l) Dieter, R.
K.; Fishpaugh, J. R. J. Org. Chem. 1988, 53, 2031. (m) Takata, T.; Tajima,
R.; Ando, W. Chem. Lett. 1985, 665. (n) Ishibe, N.; Yutaka, S. J. Org.
Chem. 1978, 43, 2138. (o) B e´ langer, A.; Brassard, P. Can. J. Chem. 1975,
(15) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Xu, Z.;
Lu, X. Tetrahedron Lett. 1999, 40, 459.
(16) Zhu, X.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett.
2005, 7, 1387.
(17) For synthesis and characterization of cyclic pentavalent 1,2-λ5-
oxaphospholenes, see: (a) Ramirez, F.; Madan, O. P.; Heller, S. R. J. Am.
Chem. Soc. 1965, 87, 731. (b) Gorenstein, D.; Westheimer, F. H. J. Am.
Chem. Soc. 1970, 92, 634. (c) Buono, G.; Llinas, J. R. J. Am. Chem. Soc.
1981, 103, 4532. (d) McClure, C. K.; Jung, K.-Y. J. Org. Chem. 1991, 56,
867. (e) Vedejs, E.; Steck, P. L. Angew. Chem., Int. Ed. 1999, 38, 5855. (f)
Yavari, I.; Alizadeh, A. Synthesis 2004, 237. Our attempts to observe the
5
(
3, 195. (p) Izumi, T.; Kasahara, A. Bull. Chem. Soc. Jpn. 1975, 48, 1673.
q) Pittet, A. O.; Klaiber, E. M. J. Agric. Food Chem. 1975, 23, 1189. (r)
5
proposed Z-1,3-dipole (or its 2,2,2-trialkyl-1,2-λ -oxaphospholene form) or
Ho, T. L.; Hall, T. W.; Wong, C. M. Synth. Commun. 1973, 3, 79. (s) Hayasi,
Y.; Nozaki, H. Tetrahedron 1971, 27, 3085. (t) Jacobs, T. L.; Dankner, D.;
Dankner, A. R. J. Am. Chem. Soc. 1958, 80, 864.
E-1,3-dipole by NMR only lead to oligomerization of allenoates. We thank
a reviewer for pointing out the previous work of Westheimer and McClure
on oxaphospholenes.
2978
Org. Lett., Vol. 7, No. 14, 2005