Low Temperature Studies of Iron-Catalyzed Cross-Coupling of Alkyl Grignard Reagents
total THF volume was adjusted to 20 mL for each run. The
reaction mixture was left to equilibrate for 20 min at the
given temperature. A calibration sample was taken from the
reaction mixture (100 mL), quenched in ammonium chloride
(aqueous) (1 mL), diluted in diethyl ether and analyzed by
gas chromatography using dodecane as internal standard.
The reaction was initiated by adding FeACTHNUTRGENUG(N acac)3 (0.1M in
THF). Samples were withdrawn from the reaction mixture
and treated as detailed above.
Rahn, D. C. Shubert, S. E. Bonde, Tetrahedron Lett.
1983, 24, 5449–5452; f) J. K. Kochi, J. Organomet.
Chem. 2002, 653, 11–19; g) T. Kauffmann, Angew.
Chem. 1996, 108, 401–418; Angew. Chem. Int. Ed. Engl.
1996, 35, 386–403.
[6] a) R. B. Bedford, M. Betham, D. W. Bruce, A. A. Da-
nopoulos, R. M. Frost, M. Hird, J. Org. Chem. 2006, 71,
1104–1110; b) R. B. Bedford, M. A. Hall, G. R. Hodges,
M. Huwe, M. C. Wilkinson, Chem. Commun. 2009,
6430–6432; c) R. B. Bedford, M. Huwe, M. C. Wilkin-
son, Chem. Commun. 2009, 600–602; d) G. Cahiez, H.
Avedissian, Synthesis 1998, 1199–1205; e) G. Cahiez, V.
Habiak, C. Duplais, A. Moyeux, Angew. Chem. 2007,
119, 4442–4444; Angew. Chem. Int. Ed. 2007, 46, 4364–
4366; f) R. R. Chowdhury, A. K. Crane, C. Fowler, P.
Kwong, C. M. Kozak, Chem. Commun. 2008, 94–96;
g) W. M. Czaplik, M. Mayer, A. Jacobi von Wangelin,
Angew. Chem. 2009, 121, 616–620; Angew. Chem. Int.
Ed. 2009, 48, 607–610; h) T. Nagano, T. Hayashi, Org.
Lett. 2004, 6, 1297–1299; i) J. Norinder, A. Matsumoto,
N. Yoshikai, E. Nakamura, J. Am. Chem. Soc. 2008,
130, 5858–5859; j) J. Quintin, X. Franck, R. Hocquemil-
ler, B. Figadere, Tetrahedron Lett. 2002, 43, 3547–3549;
k) I. Sapountzis, W. W. Lin, C. C. Kofink, C. Despoto-
poulou, P. Knochel, Angew. Chem. 2005, 117, 1682–
1685; Angew. Chem. Int. Ed. 2005, 44, 1654–1657.
[7] S. Lou, G. C. Fu, J. Am. Chem. Soc. 2010, 132, 1264–
1266.
1H NMR (400 MHz, CDCl3) Spectroscopic Data
Methyl 4-octylbenzoate: d=0.86–0.89 (t, 3H), 1.25–1.31 (m,
10H), 1.58–1.61 (m, 2H), 2.63–2.67 (t, 2H), 3.90 (s, 3H),
7.23–7.25 (d, 2H), 7.93–7.96 ppm (d, 2H).
p-Trifluoromethyloctylbenzene: d=0.88 (t, 3H), 1.21–1.39
(m, 10H), 1.57–1.64 (m, 2H), 2.65 (t, 2H), 7.27 (d, 2H),
7.52 ppm (d, 2H).
2-Octylpyridine: d=0.88 ppm (t, 3H), 1.29ACTHNURGTNE(NUG m, 10H), 1.7
(m, 2H), 2.77 (t, 2H), 7.25 (m, 2H), 7.58 (t, 1H), 8.5 (d,
1H)
Acknowledgements
The current project is supported by the Swedish Research
Council. The computations were performed on C3SE com-
puting resources in Gothenburg. We are grateful to AstraZe-
neca for generous support and to Dr. Sten Nilsson Lill for
helpful discussions regarding the calculations.
[8] W. M. Czaplik, M. Mayer, J. Cvengros, A. Jacobi von
Wangelin, ChemSusChem 2009, 2, 396–417.
[9] C. L. Kwan, J. K. Kochi, J. Am. Chem. Soc. 1976, 98,
4903–4912.
[10] R. S. Smith, J. K. Kochi, J. Org. Chem. 1976, 41, 502–
509.
References
[11] a) A. Fuerstner, A. Leitner, M. Mendez, H. Krause, J.
Am. Chem. Soc. 2002, 124, 13856–13863; b) A. Fuerst-
ner, R. Martin, Chem. Lett. 2005, 34, 624–629.
[1] a) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams,
Org. Biomol. Chem. 2006, 4, 2337–2347; b) R. W.
Dugger, J. A. Ragan, D. H. B. Ripin, Org. Process Res.
Dev. 2005, 9, 253–258; c) A. C. Frisch, M. Beller,
Angew. Chem. 2005, 117, 680–695; Angew. Chem. Int.
Ed. 2005, 44, 674–688; d) A. Zapf, M. Beller, Top.
Catal. 2002, 19, 101–109.
[2] a) Handbook of Organopalladium Chemistry for Or-
ganic Synthesis, Vol. 1–2 (Ed.: E.-I. Negishi), Wiley-
VCH, New York, 2002; b) Metal-Catalyzed Cross-Cou-
pling Reactions, Vol. 1, (Eds.: A. de Meijere, F. Dieder-
ich), Wiley-VCH, Weinheim, 2004; c) Transition Metals
for Organic Synthesis, Vol. 1, (Eds.: M. Beller, C.
Bolm), Wiley-VCH, Weinheim, 2004; d) J. Tsuji, Palla-
dium Reagents and Catalysts, Vol. 1, Wiley, Chichester,
2004.
[3] a) M. S. Kharasch, E. K. Fields, J. Am. Chem. Soc.
1941, 63, 2316–2320; b) M. S. Kharasch, P. O. Tawney, J.
Am. Chem. Soc. 1941, 63, 2308–2315; c) M. S. Khar-
asch, M. Kleiman, J. Am. Chem. Soc. 1943, 65, 491–493.
[4] a) J. P. Corriu, J. P. Masse, J. Chem. Soc. Chem.
Commun. 1972, 144a–144a; b) K. Tamao, K. Sumitani,
M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374–4376.
[5] a) M. Tamura, J. Kochi, J. Organomet. Chem. 1971, 31,
289–309; b) M. Tamura, J. K. Kochi, J. Am. Chem. Soc.
1971, 93, 1487–1489; c) J. K. Kochi, Acc. Chem. Res.
1974, 7, 351–360; d) S. M. Neumann, J. K. Kochi, J.
Org. Chem. 1975, 40, 599–606; e) G. A. Molander, B. J.
[12] a) L. E. Aleandri, B. Bogdanovic, P. Bons, C. Duerr, A.
Gaidies, T. Hartwig, S. C. Huckett, M. Lagarden, U.
Wilczok, R. A. Brand, Chem. Mater. 1995, 7, 1153–
1170; b) B. Bogdanovic, M. Schwickardi, Angew. Chem.
2000, 112, 4788–4790; Angew. Chem. Int. Ed. 2000, 39,
4610–4612; c) J. P. Collman, Acc. Chem. Res. 1975, 8,
342–347; d) A. Fuerstner, P. Hannen, Chem. Eur. J.
2006, 12, 3006–3019.
[13] a) J. Kleimark, A. Hedstrçm, P.-F. Larsson, C. Johans-
son, P.-O. Norrby, ChemCatChem 2009, 1, 152–161.
[14] a) R. Martin, S. L. Buchwald, J. Am. Chem. Soc. 2007,
129, 3844–3845; b) A. Hedstrçm, U. Bollmann, J. Bravi-
dor, P.-O. Norrby, Chem. Eur. J. 2011, 17, 11991–11993.
[15] P. J. Alonso, A. B. Arauzo, J. Fornies, M. A. Garcia-
Monforte, A. Martin, J. I. Martinez, B. Menjon, C.
Rillo, J. J. Saiz-Garitaonandia, Angew. Chem. 2006, 118,
6859–6863; Angew. Chem. Int. Ed. 2006, 45, 6707–6711.
[16] C. L. McMullin, J. Jover, J. N. Harvey, N. Fey, Dalton
Trans. 2010, 39, 10833–10836.
[17] a) J. G. de Vries, P. H. Phua, L. Lefort, J. A. F. Boogers,
M. Tristany, Chem. Commun. 2009, 3747–3749; b) L.
Lefort, C. Rangheard, C. D. Fernandez, P. H. Phua, J.
Hoorn, J. G. de Vries, Dalton Trans. 2010, 39, 8464–
8471.
[18] Jaguar v. 7.6, Schrçdinger LLC, New York, NY, 2009.
Adv. Synth. Catal. 2012, 354, 448 – 456
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
455