C O M M U N I C A T I O N S
produce hydrogen as product (on a metal surface HI is thermody-
(3) de Souza, R. O. M. A.; Bittar, M. S.; Mendes, L. V. P.; da Silva, C. M. F.;
6
da Silva, V. T.; Antunes, O. A. C. Synlett 2008, 12, 1777–1780.
namically disfavored relative to 1/2 H
2
+ 1/2 I
2
). Consistent with
(
4) Kanuru, V. K.; Humphrey, S. M.; Kyffin, J. M. W.; Jefferson, D. A.; Burton,
this, the characteristic orange-brown color of the iodine coproduct
was observed in every case. Thus,
J. W.; Armbr u¨ ster, M.; Lambert, R. M. Dalton Trans. 2009, 7602–7605.
(5) Kyriakou, G.; Beaumont, S. K.; Humphrey, S. M.; Antonetti, C.; Lambert,
R. M. ChemCatChem, DOI: 10.1002/cctc.201000154.
PhCt CH + PhI f PhCt CPh + H(a) + I(a)
(6) Kanuru, V. K.; Kyriakou, G.; Beaumont, S. K.; Papageorgiou, A. C.;
Watson, D. J.; Lambert, R. M. J. Am. Chem. Soc. 2010, 132, 8081–8086.
2
PhCt CH f PhCt CsCt CPh + 2 H(a)
(7) Gonzalez-Arellano, C.; Abad, A.; Corma, A.; Garc ´ı a, H.; Iglesias, M.;
S a´ nchez, F. Angew. Chem., Int. Ed. 2007, 46, 1536–1538.
Additionally, it is known that both ceria- and lanthana-supported
catalysts exhibit metal f support hydrogen spillover effects even
at room temperature.
(8) Lauterbach, T.; Livendahl, M.; Rosell o´ n, A.; Espinet, P.; Echavarren, A. M.
Org. Lett. 2010, 12, 3006–3009.
2
0-22
(9) Goguet, A.; Ace, M.; Saih, Y.; Sa, J.; Kavanagh, J.; Hardacre, C. Chem.
One may therefore speculate that
Commun. 2009, 4889–4891.
scavenging of hydrogen from the gold by the support acts to
promote the above two reactions, but not the homocoupling of
iodobenzene to produce biphenyl, in accord with observation.
In summary, the performance of Au/lanthana catalysts, prepared
so as to contain either Au nanoparticles or Au and Au , indicates
that it is metallic gold that provides the catalytically active sites.
(10) Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M.
Surf. Interface Anal. 2006, 38, 215–218.
(
11) In the case of the ceria-supported catalysts, it was found that deposition of
2
0 nm Au particles resulted in nanoparticle agglomeration due to the low
surface area of this support. Instead, these catalysts were prepared by an
impregnation method. In order to check that the preparation method did
not significantly affect Sonogashira selectivity, control measurements with
0
I
III
Au/SiO
2
and Au/La
2
O
3
prepared by impregnation were performed. These
and silica-
materials exhibited essentially the same selectivity as the La
2
O
3
2 2 3
When supported on CeO or La O the Au nanoparticles exhibit
supported monodisperse ∼20 nm Au nanoparticles reported in Table 1 but
a reduction in activity resulting from the lower gold surface area of the
impregnated catalysts.
strongly enhanced selectivity toward Sonogashira coupling. This
behavior cannot be accounted for in terms of redox, acid/base, or
SMSI effects; it may instead be tentatively ascribed to metal f
support hydrogen spillover.
(
12) Santra, A. K.; Goodman, D. W. J. Phys: Condens. Matter 2003, 15 (2),
R31.
(13) Nosova, L. V.; Stenin, M. V.; Nogin, Y. N.; Ryndin, Y. A. Appl. Surf. Sci.
992, 55, 43–48.
(14) Mitchel, M. D.; Vannice, M. A. Ind. Eng. Chem. Fundam. 1984, 23, 88–
6.
1
Acknowledgment. S.K.B. acknowledges financial support from
Cambridge University, Trinity Hall, Cambridge, the UK Society
of the Chemical Industry, and the International Precious Metals
Institute. G.K. acknowledges financial support by the UK Engineer-
ing and Physical Sciences Research Council.
9
(
(
15) Ryndin, Y. A.; Hicks, R. F.; Bell, A. T. J. Catal. 1981, 70, 287–297.
16) Pettigrew, D. J.; Trimm, D. L.; Cant, N. W. Catal. Lett. 1994, 28, 313–
319.
(
17) Karpenko, A.; Leppelt, R.; Cai, J.; Plzak, V.; Chuvilin, A.; Kaiser, U.;
Behm, R. J. J. Catal. 2007, 250, 139–150.
(
18) Hermann, J. J.; Ramaroson, E.; Tempere, J. F.; Guilleux, M. F. Appl. Catal.
Supporting Information Available: Experimental details of syn-
thesis, catalytic testing, and characterization techniques; additional
catalytic data; Ce and La 3d XP spectra; representative TEM of Au/
CeO Catalyst D. This material is available free of charge via the
2
Internet at http://pubs.acs.org.
1
989, 53, 117–134.
(19) Tauster, S. J. In Strong Metal-Support Interactions; Baker, R. T. K., Tauster,
S. J., Dumesic, J. A., Eds.; ACS Symposium Series 298; American
Chemical Society: Washington, DC, 1986.
(
(
(
20) Bensalem, A.; Bozon-Verduraz, F.; Perrichon, V. J. Chem. Soc., Faraday
Trans. 1995, 91, 2185–2189.
21) Bernal, S.; Calvino, J. J.; Cifredo, G. A.; Rodriguez-Izquierdo, J. M.;
Perrichon, V.; Laachir, A. J. Catal. 1992, 137, 1–11.
References
22) Bensalem, A.; Bozon-Verduraz, F. React. Kinet. Catal. Lett. 1997, 60,
(1) Li, P.; Wanga, L.; Lia, H. Tetrahedron 2005, 61, 8633–8640.
(2) Thathagar, M. B.; Kooyman, P. J.; Boerleidera, R.; Jansen, E.; Elsevier,
C. J.; Rothenberg, G. AdV. Synth. Catal. 2005, 347, 1965–1968.
71–77.
JA1063179
1
2248 J. AM. CHEM. SOC. 9 VOL. 132, NO. 35, 2010