Communication
ChemComm
chain 3:39 C56H38Cu2N3O11, Mr = 1055.97, blue rod, 0.21 ꢂ 0.12 ꢂ 19 R. W. Larsen, J. Am. Chem. Soc., 2008, 130, 11246–11247.
%
0.10 mm, triclinic, P1, a, b, c = 16.1748(7), 17.1245(8), 17.3765(8) Å, 20 R. W. Larsen, G. J. McManus, J. J. Perry IV, E. Rivera-Otero and
a, b, g: 61.699(2)1, 79.187(2)1, 79.168(2)1, V = 4135.1(3) Å3, Z = 2,
M. J. Zaworotko, Inorg. Chem., 2007, 46, 5904–5910.
r = 0.832 g cmꢁ3, Cu Ka, F(000) = 1082.0, m = 0.96 mmꢁ1, T = 100 K, 21 I. Bertini and C. Luchinaut, Coord. Chem. Rev., 1996, 150, 1–292.
ymax = 66.940, 14 174 unique reflections used, 9805 with Io 4 2s(Io), 22 M. Han, D. M. Engelhard and G. H. Clever, Chem. Soc. Rev., 2014,
Rint = 0.081, 682 parameters, 350 restraints, GoF = 1.045, R = 0.108
43, 1848.
[Io 42s(Io)], wR2 = 0.323 (all reflections), 1.43 o Dr o ꢁ1.49 e Å3.
23 A. Schmidt, A. Casini and F. E. Ku¨hn, Coord. Chem. Rev., 2014, 275,
19–36.
24 M. J. Prakash, M. Oh, X. Liu, K. N. Han, G. H. Seong and M. S. Lah,
Chem. Commun., 2010, 46, 2049.
25 J.-R. Li and H.-C. Zhou, Nat. Chem., 2010, 2, 893–898.
26 L. Avram and Y. Cohen, Chem. Soc. Rev., 2015, 44, 586–602.
27 F. Furtado, P. Galvosas, F. Stallmach, U. Roland, J. Karger and F.-D.
Kopinke, Environ. Sci. Technol., 2011, 45, 8866–8872.
28 We presume the Ca2+ appears during handling from hard water. The
Cu2+adduct is scavenged from cage disassociation under MS condi-
tions. MS of neutral self-assembled cages can be facilitated by charge
labelling. Z. Qi, T. Heinrich, S. Moorthya and C. A. Schalley, Chem. Soc.
Rev., 2015, 44, 515–531.
1 M. Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem., Int. Ed.,
2009, 48, 3418–3438.
2 S. J. Dalgarno, N. P. Power and J. L. Atwood, Coord. Chem. Rev., 2008,
252, 825–841.
3 R. Chakrabarty, P. S. Mukherjee and P. J. Stang, Chem. Rev., 2011,
111, 6810–6918.
4 M. M. J. Smulders, I. A. Riddell, C. Browne and J. R. Nitschke, Chem.
Soc. Rev., 2013, 42, 1728–1754.
¨
5 A. M. Johnson, O. Moshe, A. S. Gamboa, B. W. Langloss,
J. F. K. Limtiaco, C. K. Larive and R. J. Hooley, Inorg. Chem., 2011,
50, 9430–9442.
6 M. Frank, J. Hey, I. Balcioglu, Y.-S. Chen, D. Stalke, T. Suenobu,
S. Fukuzumi, H. Frauendorf and G. H. Clever, Angew. Chem., Int. Ed.,
2013, 52, 10102–10106.
7 H. Abourahma, A. W. Coleman, B. Moulton, B. Rather, P. Shahgaldian
and M. J. Zaworotko, Chem. Commun., 2001, 2380–2381.
8 M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O’Keeffe and
O. M. Yaghi, J. Am. Chem. Soc., 2001, 123, 4368–4369.
9 D. J. Tranchemontagne, Z. Ni, M. O’Keeffe and O. M. Yaghi, Angew.
Chem., Int. Ed., 2008, 47, 5136–5147.
29 D. A. Roberts, A. M. Castilla, T. K. Ronson and J. R. Nitschke, J. Am.
Chem. Soc., 2014, 136, 8201–8204.
30 R. Chakrabarty and P. J. Stang, J. Am. Chem. Soc., 2012, 134, 14738–14741.
31 M. Wang, W.-J. Lan, Y.-R. Zheng, T. R. Cook, H. S. White and
P. J. Stang, J. Am. Chem. Soc., 2011, 133, 10752–10755.
32 D. Zhao, S. Tan, D. Yuan, W. Lu, Y. H. Rezenom, H. Jiang, L.-Q.
Wang and H.-C. Zhou, Adv. Mater., 2011, 23, 90–93.
33 W. Lu, D. Yuan, A. Yakovenko and H.-C. Zhou, Chem. Commun.,
2011, 47, 4968.
10 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and
O. M. Yaghi, Science, 2002, 295, 469–472.
34 M. C. Young, A. M. Johnson and R. J. Hooley, Chem. Commun., 2014,
50, 1378.
11 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43,
2334–2375.
12 S. M. Cohen, Chem. Rev., 2011, 112, 970–1000.
13 J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and
J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.
14 J.-R. Li, A. A. Yakovenko, W. Lu, D. J. Timmons, W. Zhuang, D. Yuan
and H.-C. Zhou, J. Am. Chem. Soc., 2010, 132, 17599–17610.
15 H. Furukawa, J. Kim, N. W. Ockwig, M. O’Keeffe and O. M. Yaghi,
J. Am. Chem. Soc., 2008, 130, 11650–11661.
16 N. Ahmad, A. H. Chughtai, H. A. Younus and F. Verpoort, Coord.
Chem. Rev., 2014, 280, 1–27.
35 M. Liu, M. A. Little, K. E. Jelfs, J. T. A. Jones, M. Schmidtmann,
S. Y. Chong, T. Hasell and A. I. Cooper, J. Am. Chem. Soc., 2014, 136,
7583–7586.
36 M. D. Pluth and K. N. Raymond, Chem. Soc. Rev., 2007, 36, 161.
37 V. Guillerm, D. Kim, J. F. Eubank, R. Luebke, X. Liu, K. Adil,
M. S. Lah and M. Eddaoudi, Chem. Soc. Rev., 2014, 43, 6141–6172.
38 L. Chen, Q. Chen, M. Wu, F. Jiang and M. Hong, Acc. Chem. Res.,
2015, 48, 201–210.
39 Structures of 1, 3 and 10 exhibit large volume sections filled with
highly disordered solvate molecules that could not be modeled
satisfactorily (see ESI† for details). Electron density for the solvate
molecules was corrected for by reverse Fourier transform methods
using the Squeeze procedure in Platon. Corrected approximate
formulae include 9 molecules of DMSO for 1, 16 molecules of DMF for
3, and 2.6 molecules of diethyl ether for 10.
17 C. M. Vetromile, A. Lozano, S. Feola and R. W. Larsen, Inorg.
Chim. Acta, 2011, 378, 36–41.
18 J.-R. Li, D. J. Timmons and H.-C. Zhou, J. Am. Chem. Soc., 2009, 131,
6368–6369.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015