RSC Advances
Page 4 of 6
Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Org. Biomol. Chem.,
reaction stoichiometry of 1:2 of 3 with ArB(OH)2. In addition,
the observation of better reactivity of electron-rich
arylboronic acids and para-substituted arylboronic acids
(please refer to Table 2) can also be explained by the more
facile transmetalation of Ar of ArB(OH)2 to copper center in
critical intermediate i and i’ for electronically more rich and
sterically less demanding Ar group. Further studies are
underway on the elucidation of the detailed mechanism and
the preparation and reactivity of CuΙΙΙ CF3 complexes with
DOI: 10.1039/C6RA10302B
50
55
2015, 13, 11153.
3
4
For reviews on copper-mediated trifluoromethylation reactions, see:
(a) O. A. Tomashenko and V. V. Grushin, Chem. Rev., 2011, 111,
4475; (b) S. Roy, B. T. Gregg, G. W. Gribble, V.-D. Le and S. Roy,
Tetrahedron, 2011, 67, 2161; (c) T. Liu and Q. Shen, Eur. J. Org.
Chem., 2012, 6679; (d) X. Liu and X. Wu, Synlett, 2013, 1882; (e) P.
Chen and G. Liu, Synthesis, 2013, 2919.
5
For some examples of copper-mediated trifluoromethylation of aryl
and heteroaryl halides, see: (a) Z.-Y. Yang and D. J. Burton, J.
Fluorine Chem., 2000, 102, 89; (b) F. Cottet and M. Schlosser, Eur. J.
Org. Chem., 2004, 3793; (c) K. A. McReynolds, R. S. Lewis, L. K. G.
Ackerman, G. G. Dubinina, W. W. Brennessel and D. A. Vicic, J.
Fluorine Chem., 2010, 131, 1108; (d) C.-P. Zhang, Z.-L. Wang, Q.-Y.
Chen, C.-T. Zhang, Y.-C. Gu and J.-C. Xiao, Angew. Chem., Int. Ed.,
2011, 50, 1896; (e) A. Zanardi, M. A. Novikov, E. Martin, J. Benet-
Buchholz and V. V. Grushin, J. Am. Chem. Soc., 2011, 133, 20901; (f)
M. M. Kremlev, A. I. Mushta, W. Tyrra, Y. L. Yagupolskii, D.
Naumann and A. Möller, J. Fluorine Chem., 2012, 133, 67; (g) M.
Huiban, M. Tredwell, S. Mizuta, Z. Wan, X. Zhang, T. L. Collier, V.
Gouverneur and J. Passchier, Nat. Chem., 2013, 5, 941; (h) A.
Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adan, P.
Novak and V. V. Grushin, J. Org. Chem., 2013, 78, 11126.
For catalytic copper trifluoromethylation of aryl halides, see: (a)
Chen, Q.-Y.; Wu, S.-W. J. Chem. Soc., Chem. Commun. 1989, 705.
(b) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909. (c)
Kondo, H.; Oishi, M.; Fujikawa, K.; Amii, H. Adv. Synth. Catal.
2011, 383, 1247. (d) Knauber, T.; Arikan, F.; Roschenthaler, G.-V.;
Goossen, L. J. Chem.-Eur. J. 2011, 17, 2689. (e) Li, Y.; Chen, T.;
Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett 2011, 1713.
(f) Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011,
133, 9286. (g) Gonda, Z.; Kovacs, S.; Weber, C.; Gati, T.; Meszaros,
A.; Kotschy, A.; Novak, Z. Org. Lett. 2014, 16, 4268; (h) Y. Miyake,
S. Ota, M. Shibata, K. Nakajima, Y. Nishibayashi, Org. Biomol.
Chem., 2014, 12, 5594.
For selected copper-mediated trifluoromethylation of arylboronic
acids, see: (a) L. Chu and F.-L. Qing, Org. Lett., 2010, 12, 5060; (b)
T. D. Senecal, A. T. Parsons and S. L. Buchwald, J. Org. Chem.,
2011, 76, 1174; (c) T. Liu and Q. Shen, Org. Lett., 2011, 13, 2342; (d)
J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu and L. Liu,
Chem. Commun., 2011, 47, 4300; (e) C.-P. Zhang, J. Cai, C.-B. Zhou,
X.-P. Wang, X. Zheng, Y.-C. Gu and J.-C. Xiao, Chem. Commun.,
2011, 47, 9516; (f) X. Jiang, L. Chu and F.-L. Qing, J. Org. Chem.,
2012, 77, 1251; (g) B. A. Khan, A. E. Buba and L. J. Goossen,
Chem.–Eur. J., 2012, 18, 1577; (h) N. D. Litvinas, P. S. Fier and J. F.
Hartwig, Angew. Chem., Int. Ed., 2012, 51, 536; (i) T. Liu, X. Shao,
Y. Wu and Q. Shen, Angew. Chem., Int. Ed., 2012, 51, 540; (j) P.
Nova′k, A. Lishchynskyi and V. V. Grushin, Angew. Chem., Int. Ed.,
2012, 51, 7767; (k) Y. Ye and M. S. Sanford, J. Am. Chem. Soc.,
2012, 134, 9034; (l) Y. Ye, S. A. Kunzi, M. S. Sanford, Org. Lett.,
2012, 14, 4979; (m) J. Xu, B. Xiao, C.-Q. Xie, D.-F. Luo, L. Liu and
Y. Fu, Angew. Chem., Int. Ed., 2012, 51, 12551. (n) N. Nebra and V.
V. Grushin, J. Am. Chem. Soc., 2014, 136, 16998.
Copper-mediated trifluoromethylation of arenes, see: (a) R. Koller, K.
Stanek, D. Stolz, R. Aardoom, K. Niedermann and A. Togni, Angew.
Chem., Int. Ed., 2009, 48, 4332; (b) L. Chu and F.-L. Qing, J. Am.
Chem. Soc., 2012, 134, 1298; (c) R. Shimizu, H. Egami, T. Nagi, J.
Chae, Y. Hamashima and M. Sodeoka, Tetrahedron Lett., 2010, 51,
5947; (d) M. S. Wiehn, E. V. Vinogradova and A. Togni, J. Fluorine
Chem., 2010, 131, 951; (e) S. Cai, C. Chen, Z. Sun and C. Xi, Chem.
Commun., 2013, 49, 4552; (f) Jana, S.; Ashokan, A.; Kumar, S.;
Verma, A.; Kumar, S. Org. Biomol. Chem., 2015, 13, 8411.
60
10 other ancillary ligands.
F
B(OH)3
ꢀCF3
N
N
CuΙΙ
iii
reductive
F3C
CF3
65
N
N
N
N
elimination
oxidation
1/2O2, H2O
or
N
N
CuΙΙΙ
CuΙΙΙ
CuΙΙΙ
X
CF3
CF3
F3C
F3C
F3C
CF3
X = OH or
CF3
Ar
OH
iv
Fꢀ, OHꢀ
ArB(OH)2
Ar-CF3
3
i
N
N
ArB(OH)2
Fꢀ
CuΙ
F
B(OH)3
ii
CF3
70
Ar-CF3
N
N
N
N
5
CuΙΙΙ
CuΙ
X
reductive
elimination
X
F3C
Ar
v
i′
75
Scheme 3 Proposed mechanism for the aerobic trifluoromethylation of
arylboronic acids by CuΙΙΙ CF3 complex 3.
In summary, CuΙΙΙ trifluoromethyl complexes 2-4 with
15 representative phen or bpy ligand were prepared and isolated
at room temperature via oxidation of CuΙ precursors by AgF
and have been fully characterized in both solid state and
solution phase. Reactivity studies show that 3 and 4 are highly
reactive with aryl and heteroaryl boronic acids under mild co-
20 nditions. Up to quantitative yields can be achieved at room
temperature for trifluoromethylation of boronic acids using 3.
In contrast, 2 shows little reactivity. The isolation and
reactivity of these CuΙΙΙ CF3 complexes provides valuable
information for copper trifluoromethylation chemistry.
80
6
85
90
25
This study was supported by the National Natural Science
Foundation of China (Nos. 21472068, 21202062) and the
Natural Science Foundation of Jiangsu (No. BK2012108).
95
Notes and references
a
The Key Laboratory of Food Colloids and Biotechnology, Ministry of
30 Education, School of Chemical and Material Engineering, Jiangnan
University, Wuxi 214122, Jiangsu Province, China. Fax/Tel.: +86-510-
85917763; E-mail: slzhang@jiangnan.edu.cn
† Electronic Supplementary Information (ESI) available: Experimental
details, spectroscopic characterization data, X-ray crystallographic study,
35 19F NMR monitoring of reaction course and general procedures of
reaction of 2-4 with arylboronic acids. See DOI: 10.1039/b000000x/
100
105
110
115
7
1
For organofluorine chemistry and applications, see: (a) P. Kirsch,
Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, Germany,
2004; (b) S. Purser, P. R. Moore, S. Swallow and V. V. Gouverneur,
Chem. Soc. Rev., 2008, 37, 320; (c) Y. Jiang, H. Yu, Y. Fu, L. Liu,
Sci. China Chem., 2015, 58, 673.
40
45
8
9
(a) H. Egami and M. Sodeoka, Angew. Chem., Int. Ed., 2014, 53,
8293; (b) E. Merino and C. Nevado, Chem. Soc. Rev., 2014, 43, 6598.
Copper-mediated trifluoromethylation of alkynes, see: (a) L. Chu and
F.-L. Qing, J. Am. Chem. Soc., 2010, 132, 7262; (b) K. Zhang, X.-L.
Qiu, Y. Huang and F.-L. Qing, Eur. J. Org. Chem., 2012, 58; (c) D.-F.
Luo, J. Xu, Y. Fu and Q.-X. Guo, Tetrahedron Lett., 2012, 53, 2769;
(d) Y.-L. Ji, J.-J. Kong, J.-H. Lin, J.-C. Xiao, Y.-C. Gu, Org. Biomol.
Chem., 2014, 12, 2903.
2
For general reviews, see: (a) M. Schlosser, Angew. Chem., Int. Ed.,
2006, 45, 5432; (b) J.-A. Ma and D. Cahard, Chem. Rev., 2008, 108,
PR1; (c) V. V. Grushin, Acc. Chem. Res., 2010, 43, 160; (d) T.
Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470; (e) T.
Liang, C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2013,
52, 8214; (f) C. Zhang, Org. Biomol. Chem., 2014, 12, 6580; (g)
10 D. M. Wiemers and D. J. Burton, J. Am. Chem. Soc., 1986, 108, 832.
4
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]