9028
I. Gergely et al. / Tetrahedron Letters 44 (2003) 9025–9028
30, 735; Chem. Pharm. Bull. 1992, 40, 2894; (b) Morimoto,
T. T.-L.; Wu, J.; Choi, M. C. K.; Chan, A. S. C.
Tetrahedron: Asymmetry 2002, 13, 2519.
T.; Nakajima, N.; Achiwa, K. Tetrahedron: Asymmetry
1995, 6, 23; (c) Mashima, K.; Kusano, K.; Sato, N.;
Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.;
Hori, Y.; Ishizaki, K.; Akutagawa, S.; Takaya, H. J. Org.
Chem. 1994, 59, 3064; (d) Schmid, R.; Broger, E. A.;
Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.;
Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure
Appl. Chem. 1996, 68, 131.
9. 31P NMR (121.42 MHz, CDCl3, 25°C) of 3 and 4: 3a l
104.0, 3b 106.6, 3d 111.9, 4a 101.8, 4b 104.4, 4d 108.8, 4e
109.1, 4f 109.1 ppm (s).
10. Cram, D. J.; Helgeson, R. C.; Peacock, S. C.; Kaplan, L.
J.; Domeier, L. A.; Moreau, P.; Koga, K.; Mayer, J. M.;
Chao, Y.; Siegel, M.; Hoffman, D. H.; Sogah, G. D. Y.
J. Org. Chem. 1978, 43, 1930.
11. [Rh(cod)2]BF4 with 3 and 4: 31P NMR (202.45 MHz,
CDCl3, 25°C): 3a l 129.6 (d, 1J(P,Rh)=177.4 Hz), 3b 128.3
(d, 1J(P,Rh)=172.3 Hz), 3d 128.9 (d, 1J(P,Rh)=170.0 Hz),
4a 129.7 (d, 1J(P,Rh) =175.9 Hz), 4b 127.1 (d, 1J(P,Rh)=
170.2 Hz), 4d 129.1 ppm (1J(P,Rh)=167.6 Hz), 4e 130.4
(d, 1J(P,Rh)=163.2 Hz), 4f 128.1 (d, 1J(P,Rh)=166.2 Hz).
12. A typical procedure for the catalytic asymmetric hydrogena-
tion: reactions were carried out in a 20 ml stainless steel
autoclave. The catalysts were made in situ by mixing
phosphinite (0.011 mmol) with [Rh(cod)2]BF4 (4.1 mg, 0.01
mmol) in 10 mL of CH2Cl2 under argon. The solution was
stirred for 15 min and then the substrate (0.7 mL, 5 mmol
of 1) was added. The mixture was transferred into the
autoclave under argon atmosphere. The autoclave was
pressurized with H2 and then shaken at a frequency of
180/min, 75° from the upright position, with horizontal
amplitude of 3 centimeters. The reaction was monitored by
the change in pressure. The reaction mixture and the
distilled products were analyzed by gas chromatography.
The enantiomeric excess of the product (2) was determined
by GC analysis of the distilled product (Hewlett-Packard
HP 4890 gas chromatograph, split/spitless injector, b-DEX
225, 30 m, internal diameter 0.25 mm, film thickness 0.25
mm, carrier gas: 100 kPa nitrogen, F.I.D. detector; the
retention times of the enantiomers are 30.5 min (R), 32.1
min (S)). In the case of 6 the reaction mixture was passed
through a short silicagel column to remove the catalyst.
The enantiomeric excess was determined on CP-CHI-
RASIL-L-VAL column (25 m, internal diameter 0.25 mm,
film thickness 0.12 mm, carrier gas: 100 kPa nitrogen,
F.I.D. detector; the retention times of the enantiomers are
32.5 min (R), 34.2 min (S)). The configuration of the
prevailing enantiomer in the products was determined by
the sign of optical rotation of the hydrogenated product.
Conversions were determined by GC (SPB-1).
4. Substantial electronic effects on rhodium enantioselective
olefin hydrogenation with C1 symmetric phosphinites have
been described before. See: (a) RajanBabu, T. V.; Ayers,
T. A.; Casalnuovo, A. L. J. Am. Chem. Soc. 1994, 116,
4101; (b) RajanBabu, T. V.; Radetich, B.; You, K. K.;
Ayers, T. A.; Casalnuovo, A. L.; Calabrese, J. C. J. Org.
Chem. 1999, 64, 3429.
5. Au-Yeng, T. T.-L.; Chan, S.-S.; Chan, A. S. C. Adv. Synth.
Catal. 2003, 345, 537 and references cited therein.
6. (a) Yhang, X.; Mashima, K.; Kozano, K.; Sayo, N.;
Kumobayashi, H.; Akutagawa, S.; Takaya, H. J. Chem.
Soc., Perkin Trans. 1994, 2309; (b) Yhang, X.; Uemura, T.;
Matsumura, K.; Sayo, N.; Kumobayashi, H.; Akutagawa,
S.; Takaya, H. Synlett 1994, 501; (c) Xiao, J.; Nefkens, S.
C. A.; Jessop, P. G.; Ikariya, T.; Noyori, R. Tetrahedron
Lett. 1996, 37, 2813; (d) Uemura, T.; Yhang, X.; Mat-
sumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki,
K.; Takaya, H. J. Org. Chem. 1996, 61, 5510; (e) Chan, A.
S. C.; Zhang, F.-Y.; Yip, C.-W. J. Am. Chem. Soc. 1997,
119, 4080; (f) Zhang, F.-Y.; Chan, A. S. C.; Pai, F.-Y. J.
Am. Chem. Soc. 1998, 120, 5808; (g) Zhang, F.-Y.; Yip,
C.-W.; Cao, R.; Chan, A. S. C. Tetrahedron: Asymmetry
1997, 8, 585; (h) Zeng, Q.; Liu, H.; Cui, X.; Mi, A.; Jiang,
Y.; Li, X.; Coi, M. C. K.; Chan, A. S. C. Tetrahedron:
Asymmetry 2002, 13, 115; (i) Gergely, I.; Hegedu¨s, C.;
´
Gulya´s, H; Szo¨llo
3
sy, A.; Monsees, A.; Riermeier, T.;
Bakos, J. Tetrahedron: Asymmetry 2003, 14, 1087.
7. The use of phosphinites was first reported in 1978: (a)
Cullen, W. R.; Sugi, Y. Tetrahedron Lett. 1978, 1635; (b)
Selke, R. React. Kinet. Catal. Lett. 1979, 10, 135; (c)
Jacson, R.; Thomson, D. J. J. Organomet. Chem. 1978, 159,
C29; (d) Bakos, J.; To´th, I.; Heil, B. Tetrahedron Lett. 1984,
25, 4965; (e) Selke, R.; Facklam, C.; Foken, H.; Heller, D.
Tetrahedron: Asymmetry 1993, 4, 369.
8. The synthesis of BINOL-derived diphosphinites is well
known: (a) Breikss, A. I. US Patents, 1996, 5523453; (b)
Zhang, F.-Y.; Kwok, W. H.; Chan, A. S. C. H. Tetra-
hedron: Asymmetry 2001, 12, 2337; (c) Guo, R.; Au-Yeng,
13. Traubesinger, G.; Albinati, A.; Feiken, E.; Kunz, R. W.;
Pregosin, P. S.; Tschoerner, M. J. Am. Chem. Soc. 1997,
119, 6315.