Journal of Materials Chemistry A
Paper
1O2 combines with the holes originating from carrier separation 10 S. Sun, X. Li, W. Wang, L. Zhang and X. Sun, Appl. Catal., B,
to completely mineralize the pollutants under visible light 2017, 200, 323–329.
irradiation due to their strong oxidation, which endows it with 11 L. Ye, Y. Su, X. Jin, H. Xie and C. Zhang, Environ. Sci.: Nano,
great potential for practical applications. 2014, 1, 90–112.
For the sake of revealing the generalization and effectiveness 12 X. Xiao, J. Jiang and L. Zhang, Appl. Catal., B, 2013, 142, 487–
of this synthetic strategy, tetracycline hydrochloride (THC) with 493.
a similar structure to OTC is chosen to serve as the chlorine 13 J. Li, L. Zhang, Y. Li and Y. Yu, Nanoscale, 2013, 6, 167–171.
source and carbon source. The DSC-TG curve of the precursor 14 X. Jin, L. Ye, H. Xie and G. Chen, Coord. Chem. Rev., 2017,
and the morphology, color, EDS spectrum and XRD pattern of
the sample obtained by calcining the precursor at 350 ꢀC are 15 J. Li, L. Cai, J. Shang, Y. Yu and L. Zhang, Adv. Mater., 2016,
similar to those of OTC (Fig. S16–S18†), proving that the carbon 28, 4059–4064.
dopants are successfully introduced into Bi24O31Cl10 and 16 L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K. Chu and P. K. Wong,
349, 84–101.
account for the high photocatalytic activities (Fig. S19†).
Appl. Catal., B, 2016, 187, 281–290.
17 Z. Liu, F. Teng, C. Chang, Y. Teng, S. Wang, W. Gu, Y. Fan,
W. Yao and Y. Zhu, Nano Energy, 2016, 27, 58–67.
18 H. Wang, S. Chen, D. Yong, X. Zhang, S. Li, W. Shao, X. Sun,
B. Pan and Y. Xie, J. Am. Chem. Soc., 2017, 139, 4737–4742.
19 T. Das, X. Rocquefelte, R. Laskowski, L. Lajaunie, S. Jobic,
P. Blaha and K. Schwarz, Chem. Mater., 2017, 29, 3380–
3386.
20 Y. Mi, L. Wen, Z. Wang, D. Cao, R. Xu, Y. Fang, Y. Zhou and
Y. Lei, Nano Energy, 2016, 30, 109–117.
21 J. Ding, Z. Dai, F. Tian, B. Zhou, B. Zhao, H. Zhao, Z. Chen,
Y. Liu and R. Chen, J. Mater. Chem. A, 2017, 5, 23453–23459.
22 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865–3868.
4 Conclusions
In this study, the dual purpose of enhancing the carrier sepa-
ration and exciton generation is achieved during the photo-
catalytic process through carbon doping of Bi24O31Cl10 for the
rst time. The fabricated C-doped Bi24O31Cl10 enables standout
CO2 reduction and molecular oxygen activation for producing
1O2. The excellent performance of C-doped Bi24O31Cl10 and
good universality of the designed synthetic method provide
opportunities to develop advanced photocatalysts for solar fuel
generation.
¨
23 P. E. Blochl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994,
Conflicts of interest
50, 17953–17979.
24 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater.
Phys., 1999, 59, 1758–1775.
There are no conicts to declare.
25 Y. Bai, Li. Ye, T. Chen, P. Wang, L. Wang, X. Shi and
P. K. Wong, Appl. Catal., B, 2017, 203, 633–640.
26 J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You and J. Yu, Small,
2017, 13, 1603938.
27 C. Yan, G. Chen, X. Zhou, J. Sun and C. Lv, Adv. Funct. Mater.,
2016, 26, 1428–1436.
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (21471040, 21303030 and
21871066).
28 H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Soc., 2015,
137, 6393–6399.
29 N. Patel, A. Dashora, R. Jaisal, R. Fernandes and M. Yadav, J.
Phys. Chem. C, 2015, 119, 18581–18590.
30 Z. Xiong and X. Zhao, J. Am. Chem. Soc., 2012, 134, 5754–
5757.
Notes and references
1 X. Chen, S. Shen, L. Guo and S. Mao, Chem. Rev., 2010, 110,
6503–6570.
2 M. M. Khin, A. Nair, V. Babu, R. Murugan and
S. Ramakrishna, Energy Environ. Sci., 2013, 5, 8075–8109.
3 W. Tu, Y. Zhou and Z. Zou, Adv. Mater., 2014, 26, 4607–4626.
31 P. Cui, J. Wang, Z. Wang, J. Chen, X. Xing, L. Wang and
R. Yu, Nano Res., 2016, 9, 593–601.
4 R. Long, K. Mao, M. Gong, S. Zhou, J. Hu, M. Zhi, Y. You, 32 H. Huang, X. Li, J. Wang, F. Dong, P. K. Chu, T. Zhang and
S. Bai, J. Jiang, Q. Zhang, X. Wu and Y. Xiong, Angew.
Chem., Int. Ed., 2014, 53, 3205–3209.
5 R. G. Li, F. X. Zhang, D. G. Wang, J. X. Yang, M. R. Li, J. Zhu,
Y. Zhang, ACS Catal., 2015, 5, 4094–4103.
33 Z. Jiang, B. Huang, Z. Lou, Z. Wang, X. Meng, Y. Liu, X. Qin,
X. Zhang and Y. Dai, Dalton Trans., 2014, 43, 8170–8173.
X. Zhou, H. X. Han and C. S. Li, Nat. Commun., 2013, 4, 1432. 34 S. Ramesh, K. Leen, K. Kumutha and A. Arof, Spectrochim.
6 N. Wu, J. Wang, D. Tafen, H. Wang, J. Zheng, J. Lewis, X. Liu,
Acta, Part A, 2007, 66, 1237–1242.
S. Leonard and A. Manivannan, J. Am. Chem. Soc., 2010, 132, 35 X. Jin, C. Lv, X. Zhou and G. Chen, Appl. Catal., B, 2018, 226,
6679–6685.
53–60.
7 Y. Ma, L. Valkunas, S. Dexheimer, S. Bachilo and G. Fleming, 36 M. Dvorak, S. Wei and Z. Wu, Phys. Rev. Lett., 2013, 110,
Phys. Rev. Lett., 2005, 94, 157402. 016402.
8 Y. Gao and X. Peng, J. Am. Chem. Soc., 2015, 137, 4230–4235. 37 G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao,
9 C. Yang, B. Wang, L. Zhang, L. Yin and X. Wang, Angew.
Chem., Int. Ed., 2017, 56, 13445–13449.
X. Meng, P. Li and T. Kako, Adv. Funct. Mater., 2016, 26,
6822–6829.
24356 | J. Mater. Chem. A, 2018, 6, 24350–24357
This journal is © The Royal Society of Chemistry 2018