Biomacromolecules
Article
(8) Zhang, Z.; Ma, H.; Hausner, D. B.; Chilkoti, A.; Beebe, T. P., Jr.
Pretreatment of amphiphilic comb polymer surfaces dramatically
affects protein adsorption. Biomacromolecules 2005, 6, 3388−3396.
(9) Hassain, H.; Kerth, A.; Blume, A.; Kressler, J. Amphiphilic block
copolymers of poly(ethylene oxide) and poly(perfluorohexylethyl
methacrylate) on water surface and their penetration into lipid layer. J.
Phys. Chem. B 2004, 108, 9962−9969.
(10) Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J. A.; Sohn, K. E.;
Perry, R.; Ober, C. K.; Kramer, E. J.; Callow, M. E.; Callow, J. A.;
Fischer, D. A. Anti-biofouling properties of comblike block copolymers
with amphiphilic side chains. Langmuir 2006, 22, 5075−5086.
(11) Guo, W.; Tang, X.; Xu, J.; Wang, X.; Chen, Y.; Yu, F.; Pei, M.
Synthesis, characterization, and property of amphiphilic fluorinated
abc-type triblock copolymers. J. Polym. Sci., Part A: Polym. Chem. 2011,
49, 1528−1534.
(12) Shen, M.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner,
B. D.; Horbett, T. A. PEO-like plasma polymerized tetraglyme surface
interactions with leukocytes and proteins: in vitro and in vivo studies.
J. Biomater. Sci., Polym. Ed. 2002, 13, 367−390.
(13) Patrucco, E.; Ouasti, S.; Cong, D. V.; De Leonardis, P.;
Pollicino, A.; Armes, S. P.; Scandola, M.; Tirelli, N. Surface-initiated
ATRP modification of tissue culture substrates: poly(glycerol
monomethacrylate) as an antifouling surface. Biomacromolecules
2009, 10, 3130−3140.
(14) Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers
for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534−546.
(15) Cho, W. K.; Kong, B.; Choi, I. S. Highly efficient non-biofouling
coating of zwitterionic polymers: poly((3-(methacryloylamino)-
propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir
2007, 23, 5678−5682.
(16) Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization.
Chem. Rev. 2001, 101, 2921−2990.
(17) Tsarevsky, N. V.; Matyjaszewski, K. “Green” atom transfer
radical polymerization: from process design to preparation of well-
defined environmentally friendly polymeric materials. Chem. Rev.
2007, 107, 2270−2299.
(18) Wever, D. A. Z.; Raffa, P.; Picchioni, F.; Broekhuis, A. A.
Acrylamide homopolymers and acrylamide-N-isopropylacrylamide
block copolymers by atomic transfer radical polymerization in water.
Macromolecules 2012, 45, 4040−4045.
(19) Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.;
Charleux, B. Nitroxide-mediated polymerization. Progr. Polym. Sci.
2013, 38, 63−235.
(20) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.
P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.;
Rizzardo, E.; Thang, S. H. Living free-radical polymerization by
reversible addition−fragmentation chain transfer: the RAFT process.
Macromolecules 1998, 31, 5559−5562.
(21) Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J.; Perrier,
S. Bioapplications of RAFT polymerization. Chem. Rev. 2009, 109,
5402−5436.
(22) Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. RAFT agent
design and synthesis. Macromolecules 2012, 45, 5321−5342.
(23) Sun, X.-L.; He, W. D.; Li, J.; Li, L. Y.; Zhang, B. Y.; Pan, T. T.
RAFT cryopolymerizations of N,N-dimethylacrylamide and N-
isopropylacrylamide in moderately frozen aqueous solution. J. Polym.
Sci., Part A: Polym. Chem. 2009, 47, 6863−6872.
(24) Liu, B.; Perrier, S. Thermoresponsive micelles from well-defined
block copolymers synthesized via reversible addition−fragmentation
chain transfer polymerization. J. Polym. Sci., Part A: Polym. Chem. 2005,
43, 3643−3654.
(25) Skrabania, K.; Li, W.; Laschewsky, A. Synthesis of double-
hydrophilic BAB triblock copolymers via RAFT polymerisation and
their thermoresponsive self-assembly in water. Macromol. Chem. Phys.
2008, 209, 1389−1403.
(26) Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales,
C. W.; Lowe, A. B.; McCormick, C. L. Direct synthesis of thermally
responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock
phobic, low Tg, low protein adsorption) segments, MDM and
(MD)4 exhibited good adhesion to various types of substrates,
such as PS, PC, PP, Ti, glass, and a PP centrifuge tube,
particularly in a specific composition range (D = 750−1500 and
M = 250). All the surfaces coated with the MDM copolymers
showed good adhesion and ultralow adsorption of protein
(IgG), regardless of the type of substrate. Further, the PS dish
coated with MDM-3 (M(230)-[D(1500)-co-M(40)]-M(230))
could be sterilized by γ-ray irradiation and used as a good
substrate for a suspension cell culture that exhibits low cell
adhesion and good cell growth. Thus, it was revealed that the
MDM and (MD)4 block copolymers prepared under the
conditions in the present study possess the characteristics of
both stable adhesion to the substrate and high protein
repellency thereon, in addition to the high polymerization
yields. The aim of this study, that is, developing practically
applicable protein-resistant coating materials, was achieved, and
the resulting amphiphilic triblock MDM and 4-arm block
(MD)4 copolymers prepared by a sequential addition polymer-
ization will be used as promising coating materials with
distinguished biomedical characteristics.
AUTHOR INFORMATION
Corresponding Author
*Tel.: +81-47-474-2567. Fax: +81-47-474-2579. E-mail:
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Mr. H. Nakaguma (synthesis), Dr. N. Kotobuki (cell
culture), and Ms. N. Kobayashi (coating evaluation) for their
experimental supports. This work was supported by the
Ministry of Education, Science, Sports, and Culture, Japan
(Grant-in-Aid 203350117).
REFERENCES
■
(1) Snellings, G. M. B. F.; Vansteenkiste, S. O.; Corneillie, S. I.;
Davies, M. C.; Schacht, E. H. Protein adhesion at poly(ethylene
glycol) modified surfaces. Adv. Mater. 2000, 12, 1959−1962.
(2) Herrwerth, S.; Eck, W.; Reinhardt, S.; Grunze, M. Factors that
determine the protein resistance of oligoether self-assembled
monolayersinternal hydrophilicity, terminal hydrophilicity, and
lateral packing density. J. Am. Chem. Soc. 2003, 125, 9359−9366.
(3) Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings:
recent developments in the design of surfaces that prevent fouling by
proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690−
718.
(4) Delcroix, M. F.; Huet, G. L.; Conard, T.; Demoustier-
Champagne, S.; Du Prez, F. E.; Landoulsi, J.; Dupont-Gillain, C. C.
Design of mixed PEO/PAA brushes with switchable properties toward
protein adsorption. Biomacromolecules 2013, 14, 215−225.
(5) Li, X.; Wang, M.; Wang, L.; Shi, X.; Xu, Y.; Song, B.; Chen, H.
Block copolymer modified surfaces for conjugation of biomacromo-
lecules with control of quantity and activity. Langmuir 2013, 29,
1122−1128.
(6) Gudipati, C. S.; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley,
K. L. The antifouling and fouling-release perfomance of hyper-
branched fluoropolymer (HBFP)−poly(ethylene glycol) (PEG)
composite coatings evaluated by adsorption of biomacromolecules
and the green fouling alga ulva. Langmuir 2005, 21, 3044−3053.
́
(7) Freij-Larsson, C.; Nylander, T.; Jannasch, P.; Wesslen, B.
Adsorption behaviour of amphiphilic polymers at hydrophobic
surfaces: effects on protein adsorption. Biomaterials 1996, 17, 2199−
2207.
2002
dx.doi.org/10.1021/bm401914c | Biomacromolecules 2014, 15, 1992−2003