Journal of Materials Chemistry A p. 7326 - 7332 (2017)
Update date:2022-08-25
Topics:
Tian, Chengbo
Kochiss, Kevin
Castro, Edison
Betancourt-Solis, German
Han, Hongwei
Echegoyen, Luis
Fullerene derivatives can efficiently passivate the interfacial defects of perovskite layers to improve the performance of perovskite solar cells. In this work, a new dimeric fullerene derivative (D-C60) with two [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) units was designed, synthesized and applied as the electron transporting material (ETM) in perovskite solar cells (PSCs) taking advantage of its appropriate energy levels, relatively fast electron mobility, and easy solution processability compared to the widely used PC61BM, D-C60 can efficiently passivate the trap states between the perovskite and fullerene layers, leading to improved electron extraction and overall photovoltaic performance. Devices based on D-C60 as the ETM achieved power conversion efficiencies (PCEs) of 16.6%, which is significantly higher than that observed with PC61BM (14.7%). In addition, the more hydrophobic and compact D-C60 layer resulted in higher device stability than that with PC61BM. These results show that covalently linked dimeric fullerene derivative can act as efficient electron transporting materials (ETMs) for high performance PSCs.
View MoreJIANGXI AIFEIMU TECHNOLOGY CO.,LTD
Contact:+86-570-6040289
Address:FINECHEMICAL PARK,ZIBU TOWN,WANNIAN COUNTY,JIANGXI PROV.,CHINA,ZIP
Shanghai Yuking Water Soluble Material Tech Co., Ltd
Contact:86-21-68286299
Address:4F, 13B, No. 600, South Xinyuan Road 201306, Shanghai, China
LIANYUNGANG YC FINE CHEMICAL CO., LTD
Contact:+86-518-858 99188
Address:Shangdong Modern Bldg, South Greenpark Road, Lianyungang, Jiangsu Pro. China
Contact:021
Address:Pudong
Xinchang Yueding Chemical Co., Ltd.
Contact:86-571-56926323
Address:NO.90 BEIMENCHENGWAI CHENGGUAN TOWN XINCHANG
Doi:10.1039/c6ra04575h
(2016)Doi:10.1021/ja993246g
(2000)Doi:10.1021/jacs.0c08460
(2020)Doi:10.1002/jhet.5570180531
(1981)Doi:10.1002/chem.201800209
(2018)Doi:10.1039/d0sc07089k
(2021)