C O M M U N I C A T I O N S
Table 2. Rh(I)-Catalyzed Silylation Reaction of Nitrilesa
cyanoferrocene (entry 16) were found to be good substrates for
this silylation reaction. It is noteworthy that the method can be
applied not only to aryl cyanides, but also to alkenyl cyanides,
affording disubstituted (entry 17) and trisubstituted (entry 18) al-
kenylsilanes. To the best of our knowledge, this is the first example
of the catalytic cleavage of the C-CN bond of alkenyl cyanides.
In summary, we report herein on the Rh(I)-catalyzed silylation
reaction of aryl and alkenyl cyanides involving the cleavage of
unreactive C-CN and Si-Si bonds.17 Expanding the scope of the
reaction and applying this concept to other functional group
transformations are currently in progress.
Acknowledgment. We thank the Instrumental Analysis Center,
Faculty of Engineering, Osaka University, for assistance in obtaining
MS, HRMS, and elemental analyses. We also acknowledge Prof.
Baba and Prof. Yasuda (Osaka University) for obtaining 29Si NMR
spectra.
Supporting Information Available: Detailed experimental pro-
cedures and the characterization of products. This material is available
References
(1) Murakami, M.; Ito, Y. In ActiVation of UnreactiVe Bonds and Organic
Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 99.
(2) [Pd]: (a) Parshall, G. W. J. Am. Chem. Soc. 1974, 96, 2360. (b) Liu,
Q.-X.; Xu, F.-B.; Li, Q.-S.; Song, H.-B.; Zhang, Z.-Z. Organometallics
2004, 23, 610.
(3) [Pt]: Burmeister, J. L.; Edwards, L. M. J. Chem. Soc. A 1971, 1663. See
also ref 2.
(4) [Ni]: Garcia, J. J.; Arevalo, A.; Brunkan, N. M.; Jones, W. D.
Organometallics 2004, 23, 3997. See also references cited in ref 12.
(5) [Mo]: Churchill, D.; Shin, J. H.; Hascall, T.; Hahn, J. M.; Bridgewater,
B. M.; Parkin, G. Organometallics 1999, 18, 2403.
(6) [Co]: Ozawa, F.; Iri, K.; Yamamoto, A. Chem. Lett. 1982, 1707.
(7) [U]: Adam, R.; Villiers, C.; Ephritikhine, M.; Lance, M.; Nierlich, M.;
Vigner, J. J. Organomet. Chem. 1993, 445, 99.
(8) [Cu]: (a) Marlin, D. S.; Olmstead, M. M.; Mascharak, P. K. Angew. Chem.,
Int. Ed. 2001, 40, 4752. (b) Lu, T.; Zhuang, X.; Li, Y.; Chen, S. J. Am.
Chem. Soc. 2004, 126, 4760.
(9) Cross coupling reactions: (a) Miller, J. A. Tetrahedron Lett. 2001, 42,
6991. (b) Miller, J. A.; Dankwardt, J. W. Tetrahedron Lett. 2003, 44,
1907. (c) Miller, J. A.; Dankwardt, J. W.; Penney, J. M. Synthesis 2003,
1643. Arylcyanations of alkynes: (d) Nakao, Y.; Oda, S.; Hiyama, T. J.
Am. Chem. Soc. 2004, 126, 13904. Isomerization of 2-methyl-3-buteneni-
trile: (e) Chamonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.;
Chaudret, B.; Barthelat, J.-C.; Galland, J.-C. Organometallics 2004, 23,
3363. (f) Wilting, J.; Mu¨ller, C.; Hewat, A. C.; Ellis, D. D.; Tooke, D.
M.; Spek, A. L.; Vogt, D. Organometallics 2005, 24, 13. Allylcyanation
of alkynes: Nakao, Y.; Yukawa, T.; Hirata, Y.; Oda, S.; Satoh, J.; Hiyama,
T. J. Am. Chem. Soc. 2006, 128, 7116.
(10) For catalytic C-CN bond cleavage reactions of acylcyanides, see: (a)
Blum, J.; Oppenheimer, E.; Bergmann, E. D. J. Am. Chem. Soc. 1967,
89, 2338. (b) Murahashi, S.; Naota, T.; Nakajima, N. J. Org. Chem. 1986,
51, 898. (c) Nozaki, K.; Sato, H.; Takaya, H. Bull. Chem. Soc. Jpn. 1996,
69, 1629. (d) Nishihara, Y.; Inoue, Y.; Itazaki, M.; Takagi, K. Org. Lett.
2005, 7, 2639.
(11) (a) Taw, F. L.; White, P. S.; Bergman, R. G.; Brookhart, M. J. Am. Chem.
Soc. 2002, 124, 4192. (b) Taw, F. L.; Mueller, A. H.; Bergman, R. G.;
Brookhart, M. J. Am. Chem. Soc. 2003, 125, 9808.
(12) (a) Nakazawa, H.; Kawasaki, T.; Miyoshi, K.; Suresh, C. H.; Koga, N.
Organometallics 2004, 23, 117. (b) Nakazawa, H.; Kamata, K.; Itazaki,
M. Chem. Commun. 2005, 4004. (c) Itazaki, M.; Nakazawa, H. Chem.
Lett. 2005, 34, 1054.
a Reaction conditions: nitrile (2.0 mmol), hexamethyldisilane (4.0 mmol),
[RhCl(cod)]2 (0.10 mmol) in ethylcyclohexane (1.0 mL) at 130 °C, 15 h.
b Isolated yields. c Run on a 1-mmol scale. d 1,1,2,2-Tetramethyl-1,2-
diphenyldisilane was used in place of 2. e 1,2-Dibenzyl-1,1,2,2-tetrameth-
yldisilane was used in place of 2. f 10 mol % of the catalyst was used.
g GC yield. h [Rh(OMe)(cod)]2 was used as a catalyst. i Run for 40 h.
j [Rh(cod)2]BF4 was used as a catalyst. k Run for 96 h.
(13) For reviews on Si-Si bond activation, see: (a) Suginome, M.; Ito, Y.
Chem. ReV. 2000, 100, 3221. (b) Sharma, H. K.; Pannell, K. H. Chem.
ReV. 1995, 95, 1351.
We next turned our attention to the scope of this catalytic
silylation reaction (Table 2). With respect to disilanes, it was also
possible to introduce dimethylphenylsilyl and benzyldimethylsilyl
groups in modest yields by employing the corresponding disilanes
(entries 2 and 3). We were pleased to find that a diverse array of
aryl cyanides can be silylated. Thus, the catalytic process tolerates
a number of functional groups, including fluorides (entries 5 and
9), esters (entries 6-8), ethers (entry 10), tertiary amines (entry
11), and, notably, boronic esters (entry 13). The reaction is sensitive
to sterics surrounding the nitrile, as demonstrated by the reduced
yields for 1-naphthalenecarbonitrile (entry 4) and 2-methylben-
zonitrile (entry 12). Heteroaryl cyanides (entries 14 and 15) and
(14) Two mechanisms may be possible for this step: (1) via σ-bond metathesis
and (2) via oxidative addition of disilane, followed by reductive elimination
of alkyl(aryl)silane.
(15) (a) Thayer, J. S. Inorg. Chem. 1968, 7, 2599. (b) Secker, J. A.; Thayer,
J. S. Inorg. Chem. 1976, 15, 501.
(16) The formation of trimethylsilyl cyanide was confirmed by 29Si NMR
measurements of the crude reaction mixture run in toluene-d8. Resonances
observed were in agreement with those of an authentic sample (-12.73
ppm).
(17) For recent examples of the catalytic synthesis of arylsilanes from aryl
halides and hexamethyldisilane, see: (a) Shirakawa, E.; Kurahashi, T.;
Yoshida, H.; Hiyama, T. Chem. Commun. 2000, 1895. (b) Gooâen, L. J.;
Ferwanah, A.-R. Synlett 2000, 1801. These reactions require bases, such
as KF, for the activation of a Si-Si bond.
JA062745W
9
J. AM. CHEM. SOC. VOL. 128, NO. 25, 2006 8153