Journal of the American Chemical Society
Page 4 of 5
(2) (a) Zhao, C.-H.; Liu, L.; Wang, D.; Chen, Y.-J. Eur. J. Org.
the reaction of d2-3,4-dimethoxylphenylbutadiene (1q-d2) with
aminal 2d. Similar to the results obtained by Gong,7v the deu-
terium migration was observed in the regiomer 4qd-d2. In
addition, the regioselectivity of the reaction was improved
from 48:52 to 75:25. The reason may be attributed to that the
β-deuteride elimination and reinsertion steps underwent much
more slowly than the similar reactions with 1q, thus result in
the formation of allylic-Pd intermediate IV is much more
slowly than III. On the basis of these results, we speculated
that β-hydride elimination and reinsertion to form allylic-Pd
intermediate were most likely involved in this reaction.
Chem. 2006, 2977; (b) Lu, S.-F.; Du, D.-M.; Xu, J.; Zhang, S.-W. J.
Am. Chem. Soc. 2006, 128, 7418; (c) Wang, J.; Li, H.; Zu, L.; Jiang,
W.; Wang, W. Adv. Synth. Catal. 2006, 348, 2047; (d) Giampitro, N.
C.; Wolfe, J. P. J. Am. Chem. Soc. 2008, 130, 12907; (e) Anderson, J.
C.; Blake, A. J.; Mills, M.; Ratcliffe, P. D. Org. Lett. 2008, 10, 4141;
(f) Rabalakos, C.; Wulff, W. D. J. Am. Chem. Soc. 2008, 130, 13524;
(g) Yang, X.; Zhou, X.; Lin, L.; Chang, L.; Liu, X.; Feng, X. Angew.
Chem., Int. Ed. 2008, 47, 7079; (h) Kurokawa, T.; Kim, M.; Du Bois,
J. Angew. Chem., Int. Ed. 2009, 48, 2777; (i) Trost, B. M.; Malhotra,
S.; Olson, D. E.; Maruniak, A.; Du Bois, J. J. Am. Chem. Soc. 2009,
131, 4190; (j) Dagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Org.
Lett. 2009, 11, 5546.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Scheme 3. Experimental Studies on Isotope Effect
(3) For reviews, see: (a) Suginome, M.; Ito, Y. Chem. Rev. 2000,
100, 3221; (b) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106,
2320. For selected examples, see: (c) Ishiyama, T.; Yamamoto, M.;
Miyaura, N. Chem. Commun. 1996, 2073; (d) Ishiyama, T.; Yamamo-
to, M.; Miyaura, N. Chem. Commun. 1997, 689; (e) Morgan, J. B.;
Morken, J. P. Org. Lett. 2003, 5, 2573; (f) Gerdin, M.; Moberg, C.
Adv. Synth. Catal. 2005, 347, 749; (g) Burks, H. E.; Kliman, L. T.;
Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134; (h) Kliman, L. T.;
Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem. Int. Ed.
2012, 51, 521.
(4) (a) Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem.
Soc. 2012, 134, 20613; (b) Xie, Y.; Hu, J.; Xie, P.; Qian, B.; Huang,
H. J. Am. Chem. Soc. 2013, 135, 18327; (c) Zhang, G.; Gao, B.;
Huang, H. Angew. Chem., Int. Ed. 2015, 54, 7657; (d) Qin, G.; Li, L.;
Li, J.; Huang, H. J. Am. Chem. Soc. 2015, 137, 12490.
In summary, we have developed a new type of Pd-catalyzed
enantioselective aminomethylamination of conjugated dienes
with aminals via C-N bond activation. The palladium complex
coordinated with BINAPO-type ligand efficiently catalyzed
the difunctionalization reaction with high regioselectivity and
enantioselectivity, where a series of synthetically useful chiral
1,3-diamines were obtained as the reaction products. The pre-
sent transformation is the first example of an enantio- and
regioselective difunctionalization of conjugated dienes via C-
N bond activation. Further exploring efficient chiral catalysts
for regio- and enantioselectively providing the chiral 1,2-
diamines with this novel catalytic protocol and applying this
cyclopalladated complex in other asymmetric catalysis are in
progress.
(5) Hu, J.; Xie, Y.; Huang, H. Angew. Chem., Int. Ed. 2014, 53,
7272.
(6) CCDC 1447748(5i), 1450135(3aa), 1450186(3qd) and
1450134 {[Pd(R-5e)(allyl)]ClO4} contain the supplementary crys-
tallographic data for this paper. This data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
(7) For selected examples on Pd-catalyzed difunctionalization of
1,3-dienes with two nucleophiles: (a) Bäckvall, J. E.; Bystroem, S. E.;
Nordberg, R. E. J. Org. Chem. 1984, 49, 4619; (b) Bäckvall, J. E.;
Nystroem, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1985, 107, 3676;
(c) Bäckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1990, 112,
3683; (d) Larock, R. C.; Fried, C. A. J. Am. Chem. Soc. 1990, 112,
5882; (e) Larock, R. C.; Berrios-Pena, N. G.; Narayanan, K. J. Org.
Chem. 1990, 55, 3447; (f) Bäckvall, J. E.; Andersson, P. G. J. Am.
Chem. Soc. 1992, 114, 6374; (g) Castano, A. M.; Bäckvall, J.-E. J.
Am. Chem. Soc. 1995, 117, 560; (h) Ohshima, T.; Kagechika, K.;
Adachi, A.; Sodeoka, M.; Shibasaki, M. J. Am. Chem. Soc. 1996, 118,
7108; (i) Deagostino, A.; Prandi, C.; Venturello, P. Org. Lett. 2003, 5,
3815; (j) Yoshida, M.; Sugimoto, K.; Ihara, M. Org. Lett. 2004, 6,
1979; (k) Yeh, M.-C. P.; Tsao, W.-C.; Tu, L.-H. Organometallics
2005, 24, 5909; (l) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn,
K. I. J. Am. Chem. Soc. 2005, 127, 7308; (m) Houlden, C. E.; Bailey,
C. D.; Ford, J. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn,
K. I. J. Am. Chem. Soc. 2008, 130, 10066; (n) Coscia, R. W.; Lam-
bert, T. H. J. Am. Chem. Soc. 2009, 131, 2496; (o) Widenhoefer, R. A.
Angew. Chem., Int. Ed. 2009, 48, 6950; (p) Liao, L.; Sigman, M. S. J.
Am. Chem. Soc. 2010, 132, 10209; (q) Liao, L.; Jana, R.; Urkalan, K.
B.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784; (r) Xing, D.;
Yang, D. Org. Lett. 2013, 15, 4370; (s) McCammant, M. S.; Liao, L.;
Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167; (t) Stokes, B. J.;
Liao, L.; de Andrade, A. M.; Wang, Q.; Sigman, M. S. Org. Lett.
2014, 16, 466; (u) Saini, V.; O’Dair, M.; Sigman, M. S. J. Am. Chem.
Soc. 2015, 137, 608; (v) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han,
Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 13476.
ASSOCIATED CONTENT
Supporting Information. Experimental details and full spectroscopic
data for all new compounds. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
Author Contributions
§Y. L. and Y. X. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This research was supported by the Chinese Academy of Sciences,
the National Natural Science Foundation of China (21222203 and
21133011).
REFERENCES
(1) (a) Bergeron, R. J.; Feng, Y.; Weimar, W. R.; Mcmanis, J. S.;
Dimova, H.; Porter, C.; Raisler, B.; Phanstiel, O. J. Med. Chem. 1997,
40, 1475; (b) Busscher, G. F.; Rutjes, F. P. J. T.; van Delft, F. L.
Chem. Rev. 2005, 105, 775; (c) Hems, W. P.; Groarke, M.; Zanotti-
Gerosa, A.; Grasa, G. A. Acc. Chem. Res. 2007, 40, 1340; (d) Kiziri-
an, J.-C. Chem. Rev. 2008, 108, 140; (e) Sohtome, Y.; Shin, B.;
Horitsugi, N.; Takagi, R.; Noguchi, K.; Nagasawa, K. Angew. Chem.,
Int. Ed. 2010, 49, 7299.
(8) (a) Helmchen. G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336; (b)
Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921; (c) Lu, Z.;
Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
(9) (a) Grubbs, R.; DeVries, R. A. Tetrahedron Lett. 1977, 1879;
(b) Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am.
Chem. Soc. 2002, 124, 4952.
4
ACS Paragon Plus Environment