Journal of the American Chemical Society
Page 6 of 8
olefin (7) via Wittig reaction or an oxime (8) through condensaꢀ
We thank CPRIT, NIGMS (R01GM109054ꢀ01) and the Welch
1
2
3
4
5
6
7
8
tion. A subsequent Beckmann rearrangement with oxime 8 can be
adopted to give ringꢀexpanded bridged lactams (9).
Foundation (F 1781) for research grants. G.D. is a Searle Scholar
and Sloan fellow. We thank Dr. M. C. Young for proofreading the
manuscript. We also thank Dr. V. Lynch and Dr. M. C. Young for
Xꢀray structures. Johnson Matthey is acknowledged for a generꢀ
ous donation of Rh salts. Chiral Technologies is thanked for their
generous donation of chiral HPLC columns.
3. CONLUSIONS
In summary, a rhodiumꢀcatalyzed (4+1) cyclization between
cyclobutanones and allenes was developed, leading to a distinct
[4.2.1]ꢀbicyclic skeleton, containing two quaternary carbon cenꢀ
ters. The reaction involves C−C activation of cyclobutanones and
employs allenes as a oneꢀcarbon unit. A variety of functional
groups can be tolerated, and a diverse range of bridged/fused
scaffolds can be accessed. In addition, a highly enantioselective
version of this transformation can also be achieved. This new
method is expected to offer a new rapid entry to nitrogenꢀ
containing polycyclic systems, and is potentially useful for
streamlining the synthesis of complex bioactive compounds. Deꢀ
tailed mechanistic study (e.g. why the (4+1) is favored) is ongoꢀ
ing.
REFERENCES
(1) For selected reviews on C−C activation, see: (a) Jones, W. D. Nature
1993, 364, 676. (b) Murakami, M.; Ito, Y. Top. Organomet. Chem. 1999,
3, 97. (c) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38,
870. (d) Jun, C.ꢀH. Chem. Soc. Rev. 2004, 33, 610. (e) Satoh, T.; Miura,
M. Top. Organomet. Chem. 2005, 14, 1. (f) Necas, D.; Kotora, M. Curr.
Org. Chem. 2007, 11, 1566. (g) Crabtree, R. H. Chem. Rev. 1985, 85, 245.
(h) Ruhland, K. Eur. J. Org. Chem. 2012, 2683. (i) Korotvicka, A.; Necas,
D.; Kotora, M. Curr. Org. Chem. 2012, 16, 1170. (j) Seiser, T.; Saget, T.;
Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2011, 50, 7740. (k) Muꢀ
rakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100. (l) Dermenci,
A.; Coe, P. W.; Dong, G. Org. Chem. Front. 2014, 1, 567. (m) C−C bond
activation. In Topics in Current Chemistry; Dong, G., Ed.; Springerꢀ
Verlag: Berlin, 2014, Vol. 346. (n) Chen, F.; Wang, T.; Jiao, N. Chem.
Rev. 2014, 114, 8613. (o) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115,
9410.
(2)For two seminal studies, see: (a) South, M. S.; Liebeskind, L. S. J. Am.
Chem. Soc. 1984, 106, 4181. (b) Murakami, M.; Itahashi, T.; Ito, Y. J.
Am. Chem. Soc. 2002, 124, 13976.
(3) (a) Mei, G.; Liu, X.; Qiao, C.; Chen, W.; Li, C.ꢀC. Angew. Chem., Int.
Ed. 2015, 54, 1754. For related reviews, see: (b) Kuwajiama, I.; Tanino, K.
Chem. Rev. 2005, 105, 4661. (c) Kim, S.; Winkler, J. Chem. Soc. Rev.
1997, 26, 387. (d) Ylijoki, K. E. O.; Stryker, J. M. Chem. Rev. 2013, 113,
2244.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4. EXPERIMENTAL SECTION
General conditions for the Rhꢀcatalyzed (4+1) cyclization
between cyclobutanones and allenes:
In a nitrogen filled glove box, a 8 mL vial was charged with
[Rh(C2H4)2Cl]2 (1.95 mg, 0.005 mmol, 5 % mmol) and tris[3,5ꢀ
bis(trifluoromethyl)phenyl]phosphine (16.0 mg, 0.024 mmol,
24% mmol). A solution of the cyclobutanone substrate (0.1 mmol)
in 1,4ꢀdioxane (3 mL) was added, and then the vial was capped.
After stirring at room temperature for 5 minutes, the solution was
maintained at 150 °C for 36 h. The reaction was removed from
the glove box and concentrated under reduced pressure. The resiꢀ
due was purified by silica gel chromatography (iodine chamber
was used to visualize the location of the sample on the TLC plate).
(4) Murakami, M.; Ashida, S. Chem. Commun. 2006, 643.
(5) (a) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem., Int. Ed. 2014,
53, 9640. (b) Souillart, L.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53,
3001. (c) Parker, E.; Cramer, N. Organometallics 2014, 33, 780. (d) Liu,
L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485.
(6) Ko, H. M.; Dong, G. Nat. Chem. 2014, 6, 739.
(7) For a recent review of (4+1) transformation, see: Chen, J.ꢀR.; Hu, X.ꢀ
Q.; Lu, L.ꢀQ.; Xiao, W.ꢀJ. Chem. Rev. 2015, 115, 5301.
General Conditions for the Rhꢀcatalyzed enantioselective
C−C activation:
(8) For recent reviews, see: (a) López, F.; Mascareñas, J. L. Chem. Soc.
Rev., 2014, 43, 2904. (b) Yu. S.; Ma. S. Angew. Chem., Int. Ed., 2012, 51,
3074. (c) Croatt, M. P.; Wender, P. A. Eur. J. Org. Chem. 2010, 19. (d)
Kitagaki, S.; Inagaki, F.; Mukai, C. J. Synth. Org. Chem., Jpn. 2009, 67,
618. (e) Ma, S. Aldrichimica Acta 2007, 40, 91. (f) Ma, S. Chem. Rev.,
2005, 105, 2829. (g) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev., 2002,
31, 12.
(9) For selected examples of allenes as a two or threeꢀcarbon unit in cataꢀ
lytic cycloadditions, see: (a) Ma, S.; Lu, P.; Lu, L.; Hou, H.; Wei, J.; He,
Q.; Gu, Z.; Jiang, X.; Jin, X. Angew. Chem., Int. Ed. 2005, 44, 5275. (b)
Wender, P. A. Deschamps, N. M.; Sun, R. Angew. Chem., Int. Ed. 2006,
45, 3957. (c) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. Angew.
Chem., Int. Ed. 2006, 45, 2459. (d) Trillo, B.; López, F.; Gulίas, M.;
Castedo, L.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2008, 47, 951. (e)
Fujiwara, Y.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 12293. (f) Oonishi,
Y.; Hosotani, A.; Sato, Y. J. Am. Chem. Soc. 2011, 133, 10386. (g) Shu,
D.; Li, X.; Zhang, M, Robichaux, P. J.; Tang, W. Angew. Chem., Int. Ed.
2011, 50, 1346. (h) Evans, P. A.; Negru, D. E.; Shang, D. Angew. Chem.,
Int. Ed. 2015, 54, 4768. (i) Mei, L. Y.; Wei, Y.; Tang, X. Y.; Shi, M. J.
Am. Chem. Soc. 2015, 137, 8131.
(10) For examples of allenes serving as a oneꢀcarbon component in cataꢀ
lytic cycloadditions, see: (a) Casanova, N.; Seoane, A.; Mascareñas, J. L.;
Gulίas, M. Angew. Chem., Int. Ed. 2015, 54, 2374. (b) Szeto, J.;
Sriramurthy, V.; Kwon, O. Org. Lett. 2011, 13, 5420. (c) Kuppusamy, R.;
Gandeepan, P.; Cheng, C.ꢀH. Org. Lett. 2015, 17, 3846.
(11) Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.;
Wang, J. J. Am. Chem. Soc. 2014, 136, 3013.
(12) Yada, A.; Fujita, S.; Murakami, M. J. Am. Chem. Soc. 2014, 136,
7217.
In a nitrogen filled glove box, a 8 mL vial was charged with
[Rh(C2H4)2Cl]2 (1.95 mg, 0.005 mmol, 5 % mmol) and L4 (12.9
mg, 0.024 mmol, 24% mmol). A solution of the cyclobutanone
substrate (0.1 mmol) in 1,4ꢀdioxane (3 mL) was added, and then
the vial was capped. After stirring at room temperature for 5
minutes, the solution was maintained at 130 °C for 20 h. The
reaction was removed from the glove box and concentrated under
reduced pressure. The residue was purified by silica gel chromaꢀ
tography (iodine chamber was used to visualize the location of
the sample on the TLC plate).
ASSOCIATED CONTENT
Supporting Information Experimental procedures; specꢀ
tral data. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
(13) For selected reviews on vinyl carbenoids, see: (a) Davies, H. M. L.
Aldrichimica Acta 1997, 30, 107. (b) Davies, H. M. L. Curr. Org. Chem.
1998, 2, 463. For selected examples on vinyl carbenoidꢀinsertion into
C−H bonds, see: (c) Wang, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. J. Am.
ACKNOWLEDGMENT
ACS Paragon Plus Environment