Environmental Management, U.S. Department of Energy,
under contract DE-AC05-960R22464 with Oak Ridge National
Laboratory, managed by Lockheed Martin Energy Research
Corporation.
Notes and references
† 1H NMR and 13C NMR data were consistent with the assigned structures
for all new compounds.
‡ Crystal data for 5b: C42H42O6, 642.8 g mol21, triclinic, a = 10.634(3),
b = 17.432(4), c = 19.578(4) Å, a = 70.959(17), b = 89.846(17), g =
¯
77.52(2)°, V = 3340.6(13) Å3, T = 173(2) K, P1, Z = 4, m = 0.084 mm21
,
refinement of F2, final wR2 = 0.117, on all 8182 independent reflections.
tallographic data in .cif format.
Fig. 1 ORTEP drawing (50% probability elipsoids) of 5b. For clarity only
one molecule from the asymmetric unit is displayed, hydrogen atoms are
omitted, and only oxygen atoms are labeled. The minor disorder component
(O11A) is represented with a dashed boundary ellipsoid.
1 C. David Gutsche, Calixarenes, Monographs in Supramolecular
Chemistry, ed. J. F. Stoddard, The Royal Society of Chemistry,
Cambridge, 1989, vol. 1; Calixarenes, A Versatile Class of Macrocyclic
Compounds, ed. J. Vicens and V. Bo¨hmer, Kluwer, Dordrecht, 1991.
2 S. Shinkai, Tetrahedron, 1993, 49, 8933.
3 P. Timmerman, W. Verboom and D. N. Reinhoudt, NATO ASI Ser. Ser.
E, 1996, 320, 245.
4 C. Alfieri, E. Dradi, A. Pochini, R. Ungaro and G. D. Andreetti,
J. Chem. Soc., Chem. Commun., 1983, 1075.
5 P. J. Dijkstra, J. A. Brunink, K.-E. Bugge, D. N. Reinhoudt, S. Harkema,
R. Ungaro, F. Ugozzoli and E. Ghidini, J. Am. Chem. Soc., 1989, 111,
7567; E. Ghidini, F. Ugozzoli, R. Ungaro, S. Harkema, A. A. El-Fadl
and D. N. Reinhoudt, J. Am. Chem. Soc., 1990, 112, 6979.
6 Z. Asfari, S. Wenger and J. Vicens, J. Inclusion Phenom., 1994, 19,
137.
7 H. Yamamoto and S. Shinkai, Chem. Lett., 1994, 1115.
8 A. Casnati, A. Pochini, R. Ungaro, C. Bocchi, F. Ugozzoli, R. J. M.
Egberink, H. Struijk, R. Lugtenberg, F. de Jong and D. N. Reinhoudt,
Chem. Eur. J., 1996, 2, 436.
9 R. Ungaro, A. Casnati, F. Ugozzoli, A. Pochini, J.-F. Dozol, C. Hill and
H. Rouquette, Angew. Chem., 1994, 106, 1551; A. Casnati, A. Pochini,
R. Ungaro, F. Arnaud, S. Fanni, M.-J. Schwing, R. J. M. Egberink, R.
Lugtenberg, F. de Jong and D. N. Reinhoudt, J. Am. Chem. Soc., 1995,
117, 2767.
10 C. Hill, J.-F. Dozol, V. Lamare, H. Rouquette, S. Eymard, B. Tournois,
J. Vicens, Z. Asfari, C. Bressot, R. Ungaro and A. Casnati, J. Inclusion
Phenom., 1994, 19, 399; Z. Asfari, C. Bressot, J. Vicens, C. Hill, J.-F.
Dozol, H. Rouquette, S. Eymard, V. Lamare and B. Tournois, Anal.
Chem., 1995, 67, 3133.
Since previous studies have shown that the 1,3-alternate
conformation is preferred for high caesium binding and
selectivity9 and that calixarenes bearing substituents smaller
than ethoxy are conformationally mobile,16 we considered the
conformational preferences of these new compounds. The
crystal structure of 3b (Fig. 1)‡ reveals that this compound
crystallizes with two molecules in the crystallographic asym-
metric unit, with the calix[4]arene portions of both molecules
clearly in the 1,3-alt conformation. The calix[4]arene crown-
6-ethers 3a–c exhibit room temperature 1H NMR (CDCl)3
where the Ar-CH2-Ar resonances of the calixarene appear as a
pair of doublets at d ~ 4.2 and ~ 3.7 with a coupling constant of
~ 15.5 Hz, while the intraannular proton on the deoxygenated
aromatic ring is found upfield at d ~ 6.0. Grynszpan and Biali17
interpreted the upfield shift of the corresponding proton in 2b in
terms of shielding by the two phenolic rings in the 1,3-alt
conformation, whereas the positions and coupling constants of
the calixarene methylenes are more consistent with the report by
Ting et al.15 where the ‘unsubstituted phenyl rings can rotate
freely’. The calixarene methylene carbon of 3b was observed at
d 35.3, similar to the values reported to be observed for the
1,3-alternate conformers in conformationally immobile calix-
[4]arenes.18 We performed VT-NMR on 3b in CDCl3 and
observed a decrease in the separation between the pair of
doublets assigned to the calixarene methylene resonances, from
216 to 187 Hz (Dd = 29 Hz), when the temperature was
decreased from 340–220 K, consistent with rapid conforma-
tional interconversion which shows upon lowering the tem-
perature. Conversely, in toluene-d8, the separation between this
pair of doublets decreased, from 340 to 298 Hz (Dd = 42 Hz),
when the temperature was increased from 170 to 370 K,
suggesting a slow conformational interconversion which speeds
up with increasing temperature. However, coalescence was not
achieved even when a solution of 3b was heated to 500 K in
nitrobenzene-d5. In (CD2Cl)2, Dd ≈ 0 over the temperature
range 240–340 K. Consequently, the solution conformation
cannot be assigned to the calixarene portion of 3b based on
these results.
11 V. Lamare, J.-F. Dozol, F. Ugozzoli, A. Casnati and R. Ungaro, Eur. J.
Org. Chem., 1998, 8, 1559; J. F. Dozol, N. Simon, V. Lamare, H.
Rouquette, S. Eymard, B. Tournois, D. DeMarc and R.-M. Macias, Sep.
Sci. Technol., in the press.
12 J.-F. Dozol, Z. Asfari, C. Hill and J. Vicens, FR 2698362 (Chem. Abstr.,
1994, 121, 189685); J.-F. Dozol, H. Rouquette, R. Ungaro and A.
Casnati, WO 9424138 (Chem. Abstr., 1995, 122, 239730).
13 B. A. Moyer, P. V. Bonnesen, R. A. Sachleben and D. J. Presley, WO
9912878 (Chem. Abstr., 1999, 130, 214967).
14 T. J. Haverlock, P. V. Bonnesen, R. A. Sachleben and B. A. Moyer,
Radiochim. Acta, 1997, 76, 103.
15 Compound 2a was prepared in the manner previously reported for 2b:
Y. Ting, W. Verboom, L. C. Groenen, J.-D. van Loon and D. N.
Reinhoudt, J. Chem. Soc., Chem. Commun., 1990, 1432; F. Grynszpan,
Z. Goren and S. E. Biali, J. Org. Chem., 1991, 56, 532.
16 C. D. Gutsche, D. Dhawan, J. A. Levine, K. H. No and L. J. Bauer,
Tetrahedron, 1983, 39, 409.
17 F. Grynszpan and S. Biali, Tetrahedron Lett., 1991, 32, 5155.
18 C. Jaime, J. de Mendoza, P. Prados, P. M. Nieto and C. Sanchez, J. Org.
Chem., 1991, 56, 3372. These authors report that the 13C chemical shifts
are relatively insensitive to the substituents at the 1 and 4 positions of the
aromatic rings.
The results reported here have significant ramifications, not
only in the effort to develop more highly selective extractants,
but also in understanding the conformational and electronic
factors which contribute to the remarkable ionophoric proper-
ties of calixarenes and calix[4]arene crown ethers. Efforts in this
area are the subject of ongoing investigations.
This research was sponsored by the Environmental Manage-
ment Science Program, Offices of Energy Research and
Communication 9/05682C
1752
Chem. Commun., 1999, 1751–1752