Communication
ChemComm
Notes and references
1 A. Deiters and S. F. Martin, Chem. Rev., 2004, 104, 2199–2238.
2 E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem., 2014, 57,
10257–10274.
3 S. Su¨zen, Bioactive Heterocycles V, Springer, 2007, pp. 145-178.
4 B. Zhang and A. Studer, Chem. Soc. Rev., 2015, 44, 3505–3521.
5 S. Chakraborty, W. W. Brennessel and W. D. Jones, J. Am. Chem. Soc.,
2014, 136, 8564–8567.
6 K.-i. Fujita, Y. Tanaka, M. Kobayashi and R. Yamaguchi, J. Am. Chem.
Soc., 2014, 136, 4829–4832.
7 J. Wu, D. Talwar, S. Johnston, M. Yan and J. Xiao, Angew. Chem.,
2013, 125, 7121–7125.
8 W. Yao, Y. Zhang, X. Jia and Z. Huang, Angew. Chem., Int. Ed., 2014,
53, 1390–1394.
9 R. Yamaguchi, C. Ikeda, Y. Takahashi and K.-i. Fujita, J. Am. Chem.
Soc., 2009, 131, 8410–8412.
10 D. Talwar, A. Gonzalez-de-Castro, H. Y. Li and J. Xiao, Angew. Chem.,
Int. Ed., 2015, 54, 5223–5227.
11 M. Kojima and M. Kanai, Angew. Chem., 2016, 128, 12412–12415.
12 A. E. Wendlandt and S. S. Stahl, Org. Lett., 2012, 14, 2850–2853.
13 A. E. Wendlandt and S. S. Stahl, J. Am. Chem. Soc., 2013, 136, 506–512.
14 A. E. Wendlandt and S. S. Stahl, J. Am. Chem. Soc., 2014, 136,
11910–11913.
15 A. E. Wendlandt and S. S. Stahl, Angew. Chem., Int. Ed., 2015, 54,
14638–14658.
16 D. L. Evans, D. K. Minster, U. Jordis, S. M. Hecht, A. L. Mazzu Jr and
A. Meyers, J. Org. Chem., 1979, 44, 497–501.
Scheme 2 Proposed mechanism of oxidative aromatization of 1,2,3,4-
tetrahydroquinoline.
A kinetic analysis under nitrogen atmosphere revealed a decrease
of conversion after 4 h, which may be due to incomplete
re-oxidation of reduced Mn species due to lack of oxygen (Fig. S11,
ESI†). Additionally, we characterized the material by XPS after
reaction under nitrogen atmosphere (Fig. S12, ESI†). The significant
decrease (22.8%) in lattice oxygen (Os) compared to the bare material
(62.6%) indicates the presence of oxygen vacancies due to incom-
plete replenishment under nitrogen atmosphere (Table S4, ESI†).
The Mn 2p spectrum of the material used under N2 atmosphere
shows a mixture of Mn valency (a higher Mn oxidation state at
642.5 eV and a lower Mn oxidation state at 639.4 eV)36 indicative
of incomplete re-oxidation. These results allowed us to suggest a
mechanism consistent with multielectron transfer between the
Mn centers and the substrate with the involvement of labile
lattice oxygen in the catalytic cycle (Scheme 2).
In summary, we presented a heterogeneous, cost-effective,
and mild reaction procedure for oxidative aromatization of
diverse nitrogen heterocycles with readily abundant manganese
oxide materials. The use of air as the terminal oxidant, absence
of precious metals and ligand additives, along with catalyst
reusability and easy isolation of the aromatized products make
our catalytic protocol green and environmentally benign. The
mechanistic studies invoked a Mn-mediated radical species
formation, followed by two successive dehydrogenation steps.
Although optimal conditions required high temperature
(130 1C) and DMF as solvent, the reaction also worked at a
lower temperature (80 1C) in acetonitrile with formation of
desired product in 495% yield when larger catalyst loadings
were used. High surface area, the amorphous nature, and the
involvement of labile lattice oxygen are important factors for
the catalytic efficiency of meso MnOx.
17 K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2003, 42,
148–1483.
18 D. Damodara, R. Arundhathi and P. R. Likhar, Adv. Synth. Catal.,
2014, 356, 189–198.
19 M. Amende, C. Gleichweit, K. Werner, S. Schernich, W. Zhao, M. P.
¨
Lorenz, O. Hofert, C. Papp, M. Koch and P. Wasserscheid, ACS Catal.,
2014, 4, 657–665.
20 S. Furukawa, A. Suga and T. Komatsu, Chem. Commun., 2014, 50,
3277–3280.
21 M. H. So, Y. Liu, C. M. Ho and C. M. Che, Chem. – Asian J., 2009, 4,
1551–1561.
22 H. Yuan, W.-J. Yoo, H. Miyamura and S. Kobayashi, J. Am. Chem.
Soc., 2012, 134, 13970–13973.
23 D. V. Jawale, E. Gravel, N. Shah, V. Dauvois, H. Li, I. N. Namboothiri
and E. Doris, Chem. – Eur. J., 2015, 21, 7039–7042.
24 D. Ge, L. Hu, J. Wang, X. Li, F. Qi, J. Lu, X. Cao and H. Gu,
ChemCatChem, 2013, 5, 2183–2186.
25 X. Cui, Y. Li, S. Bachmann, M. Scalone, A.-E. Surkus, K. Junge,
C. Topf and M. Beller, J. Am. Chem. Soc., 2015, 137, 10652–10658.
26 A. V. Iosub and S. S. Stahl, Org. Lett., 2015, 17, 4404–4407.
27 A. S. Poyraz, C.-H. Kuo, S. Biswas, C. K. King’ondu and S. L. Suib,
Nat. Commun., 2013, 4, 2952.
28 S. Biswas, A. S. Poyraz, Y. Meng, C.-H. Kuo, C. Guild, H. Tripp and
S. L. Suib, Appl. Catal., B, 2015, 165, 731–741.
29 S. Biswas, B. Dutta, K. Mullick, C.-H. Kuo, A. S. Poyraz and S. L. Suib,
ACS Catal., 2015, 5, 4394–4403.
30 S. Biswas, K. Mullick, S.-Y. Chen, A. Gudz, D. M. Carr, C. Mendoza,
A. M. Angeles-Boza and S. L. Suib, Appl. Catal., B, 2017, 203, 607–614.
31 S. Biswas, K. Mullick, S.-Y. Chen, D. A. Kriz, M. Shakil, C.-H. Kuo,
A. M. Angeles-Boza, A. R. Rossi and S. L. Suib, ACS Catal., 2016, 6,
5069–5080.
32 B. Dutta, S. Biswas, V. Sharma, N. O. Savage, S. Alpay and S. L. Suib,
Angew. Chem., 2016, 128, 2211–2215.
33 S. L. Suib, Acc. Chem. Res., 2008, 41, 479–487.
34 L. E. Seitz, W. J. Suling and R. C. Reynolds, J. Med. Chem., 2002, 45,
5604–5606.
35 V. D. Makwana, Y.-C. Son, A. R. Howell and S. L. Suib, J. Catal., 2002,
210, 46–52.
36 H. C. Genuino, S. Dharmarathna, E. C. Njagi, M. C. Mei and
S. L. Suib, J. Phys. Chem. C, 2012, 116, 12066–12078.
AMAB acknowledges the financial support from the University of
Connecticut. SLS thanks support of the US Department of Energy,
Office of Basic Energy Sciences, Division of Chemical, Biological and
Geological Sciences under grant DE-FG02-86ER13622.A000.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017