Journal of the American Chemical Society
Page 6 of 8
(
10) For reviews of enantioselective aza-Diels–Alder reaction, see:
(a) Yamamoto, H.; Kawasaki, M.; Bull. Chem. Soc. Jpn. 2007, 80,
95–607. (b) Ukaji, Y. In Comprehensive Chirality, Carreira, E. M.,
Yamamoto, H. Eds.; Elsevier: Oxford, 2012, Vol. 5, pp 470–501.
11) Amidodiene 4a decomposed during the reaction.
12) (a) Srinivasan, V; Jebaratnam, D. J.; Budil, D. E. J. Org. Chem.
ACKNOWLEDGMENTS
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Support was partially provided by IMS, JSPS via Grant-in-Aid
for Scientific Research C (No. 23550114) for N.M., and Grant-
in-Aid for Scientific Research on Innovative Area “Advanced
Molecular Transformations by Organocatalysts” from MEXT,
Japan (No. 23105002 for M.T., No. 23105005 for M.Y.)”. We
sincerely thank Dr. Koji Yamamoto, Research Center of Inte-
grative Molecular System, Institute for Molecular Science for
the X-ray crystallographic analysis of 5e, and Fuji Silysia
5
(
(
1999, 64, 5644–5649. (b) Kawasaki, M.; Yamamoto, H. J. Am.
Chem. Soc. 2006, 128, 16482–16483.
(13) (a) Nakamura, S.; Nakashima, H.; Yamanura, A.; Shibata, N.;
Toru, T. Adv. Synth. Catal. 2008, 350, 1209–1212. (b) Nakamura,
S.; Sakurai, Y.; Nakashima, H.; Shibata, N.; Toru, T. Synlett 2009,
1639–1642. (c) Nakamura, S.; Maeno, Y.; Ohara, M.; Yamamura,
A.; Funahashi, Y.; Shibata, N. Org. Lett. 2012, 14, 2960–2963.
(14) For X-ray crystallographic analyses of Brønsted acid–pyridine
complexes, see: (a) Panneerselvam, K.; Hansongnern, K.; Rattana-
wit, N.; Liao, F-L.; Lu, T-H. Anal. Sci. 2000, 16, 1107–1108. (b)
Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K. J. Org. Chem.
®
Chemical LTD. for the gift of CHROMATOREX -DIOL. N.M.,
T.F., and K.Y. gratefully acknowledge JST-ACCEL for finan-
cial support. H.T. acknowledges JSPS for a Research Fellow-
ship for Young Scientists. K.F. thanks the Yoshida Scholarship
Foundation.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
REFERENCES
(1) For selected reviews of chiral Brønsted acid catalysts, see: (a)
Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348,
2
(
011, 76, 6030–6037.
15) Absolute configuration of each regioisomer was determined by
X-ray diffraction analysis, see Supporting Information.
16) (a) Yin, L.; Brewitz, L.; Kumagai, N.; Shibasaki, M. J. Am.
9
99–1010. (b) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr.
(
Chem. 2010, 291, 395–456. (c) Trkmen, Y. E.; Zhu, Y.; Rawal, V.
H.; In Comprehensive Enantioselective Organocatalysis Dalko, P. I.
Ed.; Wiley: Weinheim, 2013, Vol. 2, pp 241–288. (d) Akiyama, T.;
Mori, K. Chem. Rev. 2015, 115, 9277–9306.
Chem. Soc. 2014, 136, 17958–19761. (b) Brewitz, L.; Arteaga, F.
A.; Yin, L.; Alagiri, K.; Kumagai, N.; Shibasaki, M. J. Am. Chem.
Soc. 2015, 137, 15929–15939.
(
17) The reactions were also attempted in the presence of 10 mol %
(
2) For references of each chiral Brønsted acid catalysts, see the
Supporting Information.
3) (a) Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127,
080–1081. (b) Hasegawa, A.; Naganawa, Y.; Fushimi, M.; Ishihara,
chiral monophosphoric acids with 2,4,6-triisopropylphenyl or bis-
trifluoromethylphenyl group. The desired azo-hetero-Diels–Alder
products were obtained; however, chemical yields and selectivities
were less than those by 1a. In the presence of monophosphoric acid
with 2,4,6-triisopropylphenyl group: 58% yield, 5a:6a = 19:1, 99%
ee of 5a. In the presence of monophosphoric acid with 3,5-bis-
trifluoromethylphenyl group: 13% yield, 5a:6a = 1.3:1, 90% ee of
5a, 84% ee of 6a.
(
1
K.; Yamamoto, H. Org. Lett. 2006, 8, 3175–3178. (c) Jones, C. R.;
Pantoş, G. D.; Morrison, A. J.; Smith, M. D. Angew. Chem., Int. Ed.
2009, 48, 7391–7394. (d) Probst, N.; Madarasz, A.; Valkonen, A.;
Papai, I.; Rissanen, K.; Neuvonen, A.; Pihko, P. M. Angew. Chem.,
Int. Ed. 2012, 51, 8495–8499. (e) Min, C.; Mittal, N.; Sun, D. X.;
Seidel, D. Angew. Chem., Int. Ed. 2013, 52, 14084–14088. (f) Rat-
jen, L.; van Gemmeren, M.; Pesciaioli, F.; List, B. Angew. Chem.,
Int. Ed. 2014, 53, 8765–8769. (g) Min, C.; Lin, C-T., Seidel, D.
Angew. Chem., Int. Ed. 2015, 54, 6608–6612.
(
18) The reaction of 3d with 1-methoxybuta-1,3-diene was also
attempted in the presence of 10 mol % 1a. The reaction gave the
product at 0 °C for 20 h; however, the yield and selectivities were
insufficient (yield of two isomers: 22 %, regioisomer ratio: 49/1,
~
40% ee for major regioisomer).
(
4) For representative reviews of chiral phosphoric acid, see: (a)
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R. Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian,
H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant,
J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.;
Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jara-
millo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma,
K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J.
V.; Cioslowski, J.; Fox, D. Gaussian 09, Revision D.01.; Gaussian,
Inc.:Wallingford, CT, 2013. Details of DFT calculations are shown
in Supporting Information.
Terada, M. Synthesis 2010, 2, 1929–1982. (b) Akiyama, T. In
Asymmetric Synthesis II, Christmann, M., Brase, S. Eds.; Wiley-
VCH: Weinheim, 2012, pp 261–266. (c) Parmar, D.; Sugiono, E.;
Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047–9153.
(5) Momiyama, N.; Narumi, T.; Terada, M. Chem. Commun. 2015,
5
1, 16976–16979.
(
6) (a) Momiyama, N.; Konno, T.; Furiya, Y.; Iwamoto, T.; Terada,
M. J. Am. Chem. Soc. 2011, 133, 19294–19297. (b) Momiyama, N.;
Funayama, K.; Noda, H.; Yamanaka, M.; Akasaka, N.; Ishida, S.;
Iwamoto, T.; Terada, M. ACS Catal. 2016, 6, 949–956.
(7) For representative reviews of multi-point control by chiral metal
catalyst, see: (a) Matsunaga, S.; Shibasaki, M. Synthesis 2013, 45,
4
5
21–437. (b) Matsunaga, S.; Shibasaki, M. Chem. Commun. 2014,
0, 1044–1057.
(
8) For representative reviews of asymmetric hetero-Diels–Alder
reaction, see: (a) Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39,
3558–3588. (b) Jørgensen, K. A. Eur. J. Org. Chem. 2004, 2093–
2
102. (c) Lin, L.; Liu, X.; Feng, X. Synlett 2007, 2147–2157. (d)
(20) Details for X-ray diffraction analysis of 1a, see: Supporting
Information.
Pellissier, H. Tetrahedron 2009, 65, 2839–2877. (e) Masson, G.;
Lalli, C.; Benohoud, M.; Dagousset, G. Chem. Soc. Rev. 2013, 42,
(
21) He, L.; Chen, X. H.; Wang, D.; Luo, S. W.; Zhang, W. Q.; Yu,
J.; Ren, L.; Gong, L. Z. J. Am. Chem. Soc. 2011, 133, 13504-13518.
22) Both TSr1_exo and TSs1_exo were unable to be optimized by
9
02–923. (f) Du, H.; Ding, K. In Comprehensive Enantioselective
Organocatalysis: Catalysts, Reactions, and Applications, Kalko, P.
I. Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2013,
Vol. 3, pp 1131–1162. (g) Ishihara, K.; Sakakura, A. In Compre-
hensive Organic Synthesis 2nd ed., Knochel, P., Molander, G. A.
Eds.; Elsevier: Oxford, 2014, Vol. 5, pp 409–465.
(
structural and geometric restrictions.
(23) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. J. Am. Chem.
Soc. 2007, 129, 6756-6764.
(
24) The energies of TS were dissected into the distortion (DEF)
(
9) For representative examples of enantioselective azo-hetero-
and interaction energies (INT) for the two distorted fragments (1a
and 3d/4a) constructing TS. The differences for each energies
Diels–Alder reactions, see: (a) Aburel, P. S.; Zhuang, W.; Hazell, R.
G.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 2344–2349. (b)
Liu, B.; Li, K-N.; Luo, S-W.; Huang, J-Z.; Huan, P.; Gong, L-Z. J.
Am. Chem. Soc. 2013, 135, 3323–3326. (c) Liu, B.; Liu, T-Y.; Luo,
S-W.; Gong, L-Z. Org. Lett. 2014, 16, 6164–6167.
(
DDEF and DINT) among diastereomeric TSs were calculated by
the counterpoise method. The original distortion/interaction analysis,
see: (a) Morokuma, K.; Kitaura, K. in Chemical Applications of
Atomic and Molecular Electrostatic Potentials, Politzer, P., Truhlar,
ACS Paragon Plus Environment