Please do not adjust margins
Dalton Transactions
Page 4 of 4
DOI: 10.1039/C8DT00457A
COMMUNICATION
Journal Name
MP2/6-311+G* level are higher than those at MP2/6-31G* by
20-30 kJ/mol. The frontier MOs of reveal that the compound
1 A. Saeed, H. Mehfooz, F. A. Larik, M. Faisal and P. A. Channar, J.
2
has the potential to be amphoteric, with Lewis acidity at
phosphorus and Lewis basicity at sulphur. The electrostatic
Asian Nat. Prod. Res., 2017, 19, 1112-1123.
2
M. Jesberger, T. P. Davis and L. Barner, Synthesis, 2003, 13
,
potential plot for
can see the probability of
site. In the case of the formation of analogues of
2
is shown (Figure 3 left) and from this one
1929-1958.
3
T. Ozturk, E. Ertas and O. Mert, Chem. Rev. 2007, 107, 5210-
2
engaging bases at the phosphorus
4,
5278.
4
combination of the model systems RPS2 (above) with the
simplified carbene 1,3-dimethylimidazol-2-ylidene is predicted
to be exothermic (exergonic) by 179 (130), 172 (108), and 185
(127) kJ/mol, respectively. The overall process from dimer to
two adduct molecules is therefore favourable. Combination of
the model systems with pyridine, is predicted to be much less
exothermic (exergonic) by 73 (26), 79 (21), and 78 (29) kJ/mol,
and the overall reaction is nearly thermoneutral. Lastly, the
L. Legnani, L. Toma, P. Caramella, M. A. Chiacchio, S. Giofrè, I.
Delso, T. Tejero, and P. Merino, J. Org. Chem., 2016, 81, 7733-
7740.
5
M.A. Chiacchio, L. Legnani, P. Caramella, T. Tejero and P. Merino,
Eur. J. Org. Chem., 2017, 1952-1957.
6
R. Kempe, J. Sieler, H. Beckmann and G. Ohms, Z. Kristallogr.,
1992, 202, 159.
7
G. Grossmann, G. Ohms, K. Kruger, G. Jeschke, P.G. Jones and A.
electrostatic potential plot for the complex
(Figure right), highlighting the changes induced by
coordination of the carbene to Consonant with the
electrostatic potential plot, possesses large dipole
4 is also shown
Fischer, Phosphorus, Sulfur, Silicon, Rel. Elem., 1995, 107, 57.
8
3
M. Nieger, E. Niecke and R. Serwas, CSD Communication (Private
2
.
Communication), 2002, refcode BADKOH.
9
4
a
R. Appel, F. Knoch and H. Kunze, Angew. Chem., Int.Ed., 1983, 22,
moment, 10.5 D, when calculated at the B3LYP/6-31G* level.
1004.
10H. Beckmann, G. Grossmann, G. Ohms and J. Sieler, Heteroat.
Chem., 1994, 5, 73.
11C.J. Carmalt, J.A.C. Clyburne, A.H. Cowley, V. Lomeli and B.G.
McBurnett, Chem. Commun., 1998, 243-144.
12
Z. Weng, W.K. Leong, J.J. Vittal and L.Y. Goh, Organometallics,
2003, 22, 1645-1656.
13 V.G. Albano, M.C. Aragoni, M. Arca, C. Castellari, F. Demartin, F.A.
Devillanova, F. Isaia, V. Lippolis, L. Loddo and G.Verani, Chem.
Commun., 2002, 1170–1171.
14
A.J. Arduengo III, R. Krafczyk, W.J. Marshall and R. Schmutzler, J.
Am. Chem. Soc., 1997, 119, 3381-3382.
15 A.J. Arduengo III, C.J. Carmalt, J.A.C. Clyburne, A.H. Cowley and R.
Pyati, Chem. Commun., 1997, 981-982.
Figure 3. Electrostatic potentials [atomic units (au)] super-
imposed on the total electron density isosurface (3x10-3 au) of
(left)
2
and (right)
4
calculated using DFT [B3LYP/6-31G*].24
16
A.J. Arduengo III, J.C. Calabrese, A.H. Cowley, H. V.R. Dias, J.R.
Goerlich, W.J. Marshall and B. Riegel, Inorg. Chem., 1997, 36, 2151-
2158.
Compounds
4
and 5 are examples of a rare type of
17
D. Bockfeld, T. Bannenberg, P. G. Jones and M. Tamm, Eur. J.
Inorg. Chem., 2017, 3452–3458.
M. Meisel, P. Lönnecke, A.-R. Grimmer and D. Wulff-Molder,
Angew. Chem. Int. Ed. Engl., 1997, 36, 1869-1870.
L. Ascherl, A. Nordheider, K.S.A. Arachchige, D. B. Cordes, K.
Karaghiosoff, M. Bühl, A.M.Z. Slawin and J.D. Woollins, Chem.
Commun., 2014, 50, 6214-6216.
S.V.C. Vummaleti, D.J. Nelson, A. Poater, A. Gómez-Suárez, D.B.
Cordes, A.M.Z. Slawin, S.P. Nolan and L. Cavallo, Chem. Sci., 2015, 6,
complex in which an NHC is bonded to a low coordinate and
high oxidation state phosphorus centre. They represent the
ultimate products formed in the stepwise oxidation of the
arylphosphinidene complexes, NHC•PAr, species that can be
considered to be formed between a neutral carbene and a
phosphinidene. A full discussion is beyond the scope of this
report, but we note that during the preparation of this
manuscript the first phosphinidene structure, the intermediate
oxidation product ArP(S)•NHC, was published.25 In summary,
the first adducts between NHCs and the cleavage product of LR
18
19
20
1895–1904.
21
K. Pal, O.B. Hemming, B.M. Day, T. Pugh, D.J. Evans and R.A.
have been prepared. These have been fully characterized, with Layfield, Angew. Chem. Int. Ed., 2016, 55, 1690-1693.
22
X-ray crystal structures and ab initio calculations included.
We thank the Natural Sciences and Engineering Research
Council of Canada, the Canadian Foundation for Innovation
and the Nova Scotia Research and Innovation Trust Fund. CCP
thanks ACEnet for computational support.
J.D. Masuda, W.W. Schoeller, B. Donnadieu and G. Bertrand, J.
Am. Chem. Soc., 2007, 129, 14180-14181.
Gaussian 03, Revision D.02, M. J. Frisch et al., Gaussian, Inc.,
23
Wallingford CT, 2004.
24
Spartan 14, Wavefunction Inc., Irvine, CA, USA, 2013.
C.M.E. Graham, T.E. Pritchard, P.D. Boyle, J. Valjus, H.M.
25
Tuononen and P.J. Ragogna, Angew. Chem. Int. Ed. 2017, 56, 6236 –
6240.
Conflicts of interest
The authors have no conflicts to declare.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins