amounts of sulfate.5 Recently, we reported the synthesis of
a 2,6-diamidopyridine-dipyrromethane hybrid macrocycle6
and several congeners based on bipyrole7 that displayed high
new agents display affinities for a broader range of anions.
They also differ in terms of selectivity. In particular, while
the pyridine-based macrocycles display a preference for
tetrahedral anions, the thiophene-based systems permit a
discrimination based on size rather than specific geometry.
The bis(2-aminophenyl)-thiophene-2,5-dicarboxamide 3
(Scheme 1) is the central precursor for the synthesis of
-
selectivity for HSO4- over NO3 . In an effort to understand
more completely the determinants of this selectivity, we have
sought to replace the central 2,6-diamidopyrridine moiety
by another known anion receptor subunit, namely, 2,5-
diamidothiophene.8 Such a substitution was expected to result
in a more flexible macrocyclic receptor and one that would
interact with a wider range of anions.9
Scheme 1. Synthesis of Precursor 3
We now wish to report the synthesis and anion binding
properties of the first members of this potentially large series
of receptors, as well as their anion binding properties. As
compared to the corresponding pyridine-based systems, these
(3) For recent reviews of work in the anion-binding field, please see:
(a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486-516. (b)
Martinez-Man˜ez, R.; Sanceno´n, F. Chem. ReV. 2003, 103, 4419-4476. Beer,
P. D.; Hayes, E. J. Coord. Chem. ReV. 2003, 240, 167-189. (c) Best, M.
D.; Tobey, S. L.; Anslyn, E. V. Coord. Chem. ReV. 2003, 240, 3-15. (d)
Sessler, J. L.; Camiolo, S.; Gale, P. A. Coord. Chem. ReV. 2003, 240, 17-
55. (e) Llinares, J. M.; Powell, D.; Bowman-James, K. Coord. Chem. ReV.
2003, 240, 57-75. (f) Bondy, C. R.; Loeb, S. J. Coord. Chem. ReV. 2003,
240, 77-99. (g) Choi, K.; Hamilton, A. D. Coord. Chem. ReV. 2003, 240,
101-110. (h) Wedge, T. J.; Hawthorne, M. F. Coord. Chem. ReV. 2003,
240, 111-128. (i) Lambert, T. N.; Smith, B. D. Coord. Chem. ReV. 2003,
240, 129-141. (j) Davis, A. P.; Joos, J.-B. Coord. Chem. ReV. 2003, 240,
143-156. (k) Hosseini, M. W. Coord. Chem. ReV. 2003, 240, 157-166.
(l) Gale, P. A. Coord. Chem. ReV. 2003, 240, 191-221. (m) Wiskur, S. L.;
Ait-Haddou, H.; Anslyn, E. V.; Lavigne, J. J. Acc. Chem. Res. 2001, 34,
963-972.
(4) (a) Beer, P. D.; Hesek, D.; Nam, K. C. Organometallics 1999, 18,
3933-3943. (b) Choi, K.; Hamilton, A. D. J. Am. Chem. Soc. 2001, 123,
2456-2457. (c) Hossain, Md. A.; Llinares, J. M.; Powell, D.; Bowman-
James, K. Inorg. Chem. 2001, 40, 2936-2937. (d) Kubik, S.; Kirchner, R.;
Nolting, D.; Seidel, J. J. Am. Chem. Soc. 2002, 124, 12752-12753. (e)
Ihm, H.; Yun, S.; Kim, H. G.; Kim, J. K.; Kim, K. S. Org. Lett. 2002, 4,
2897-2900. (f) Herges, R.; Dikmans, A.; Jana, U.; Ko¨hler, F.; Jones, P.
G.; Dix, I.; Fricke, T.; Ko¨nig, B. Eur. J. Org. Chem. 2002, 3004-3014.
(g) Lee, D. H.; Lee, H. Y.; Hong, J.-I. Tetrahedron Lett. 2002, 43, 7273-
7276. (h) Kang, S. O.; Oh, J. M.; Yang, Y. S.; Chun, J. C.; Jeon, S.; Nam,
K. C. Bull. Korean Chem. Soc. 2002, 23, 145-147. (i) Coles, S. J.; Denuault,
G.; Gale, P. A.; Horton, P. N.; Hursthouse, M. B.; Light, M. E.; Warriner,
C. N. Polyhedron 2003, 22, 699-709. (j) Kang, S. O.; Llinares, J. M.;
Powell, D.; VanderVelde, D.; Bowman-James, K. J. Am. Chem. Soc. 2003,
125, 10152-10153. (k) Tobey, S. L.; Anslyn, E. V. J. Am. Chem. Soc.
2003, 125, 14807-14808. (l) Yang, Y. S.; Ko, S. W.; Song, I. H.; Ryu, B.
J.; Nam, K. C. Bull. Korean Chem. Soc. 2003, 24, 681-684. (m) Hossain,
A.; Liljegren, J. A.; Powell, D.; Bowman-James, K. Inorg. Chem. 2004,
43, 3751-3755. (n) Curiel, D.; Beer, P. D. Chem. Commun. 2005, 1909-
1911. (o) Kang, S. O.; Hossain, M. A.; Powell, D.; Bowman-James, K.
Chem. Commun. 2005, 328-330.
(5) Vienna, J. D.; Schweiger, M. J.; Smith, D. E.; Smith, H. D.; Crum,
J. V.; Peeler, D. K.; Reamer, I. A.; Musick C. A.; Tillotson, R. D. Report
PNNL-12234, Pacific Northwest National Laboratory, Richland, 1999. (b)
Crawford, C. I.; Ferrara, D. M.; Schumacher, R. F.; Bibler, N. E. Report
WSRC-MS-2002-00449, Westinghouse Savannah River Company, Aiken,
2002.
(6) (a) Sessler, J. L.; Katayev, E.; Pantos, G. D.; Ustynyuk, Yu. A. Chem.
Commun. 2004, 1276-1277. (b) Sessler, J. L.; Katayev, E.; Pantos, G. D.;
Scherbakov, P.; Reshetova, M. D.; Khrustalev, V. N.; Lynch, V. M.;
Ustynyuk, Yu. A. J. Am. Chem. Soc. 2005, 127, 11442-11446.
(7) Katayev, E.; Pantos, G. D.; Reshetova, M. D.; Khrustalev, V. N.;
Lynch, V. M.; Ustynyuk, Yu. A.; Sessler, J. L. Angew. Chem., Intl. Ed.
2005, in press.
(8) (a) Gale, P. A.; Hursthouse, M. B.; Light, M. E.; Warriner, C. N.
Collect. Czech. Chem. Commmun. 2004, 69, 1301-1308. (b) Coles, S. J.;
Gale, P. A.; Hursthouse, M. B.; Light, M. E.; Warriner, C. N. Supramol.
Chem. 2004, 16, 469-486.
(9) For studies of the anion binding properties of oligopyrroles analogous
to the pyrrolic building blocks used in this study, see: (a) El Drubi Vega,
I.; Camiolo, S.; Gale, P. A.; Hursthouse, M. B.; Light, M. E. Chem.
Commun. 2003, 1696-1687. (b) El Drubi Vega, I.; Gale, P. A.; Hursthouse,
M. B.; Light, M. E. Org. Biomol. Chem. 2004, 2, 2935-2941. (c) Sessler,
J. L.; Eller, L. R.; Cho, W.-S.; Nicolaou, S.; Aguilar, A.; Lee, J. T.; Lynch,
V. M.; Magda, D. J. Angew. Chem., Int. Ed. 2005, 44, 5989-5992.
macrocycles 6 and 7 (Scheme 2). It was prepared using an
extension of the procedure introduced by Picard et al.10
Specifically, 2,5-thiophene dicarboxylic acid was converted
into the corresponding diacid dichloride, 1, by treatment with
SOCl2.8 Compound 1 was then condensed with 1,3-thiazo-
lidine-2-thione to give the diamide 2 in 74% yield. Reaction
of 2 with o-phenylenediamine in dichloromethane then
afforded compound 3 in 78% yield. In analogy to what was
done previously,6,7 precursor 3 was condensed with the
diformyldipyrromethane 4 in the presence of 2.5 equiv of
H2SO4 to give 6‚H2SO4 in 90% yield.11 In a similar manner,
macrocycle 7‚HCl was synthesized in 83% yield via the
condensation of 3 with diformylbipyrrole 5 in the presence
of 2.5 equiv of HCl. Both macrocycles were converted to
their respective “free base” forms by treating methylene
chloride solutions of the corresponding acid salts with
triethylamine. The overall yields for the deprotonation steps
were 81% and >99% for 6 and 7, respectively.
Proof for the proposed structures of macrocycles 6 and 7
came from single-crystal X-ray diffraction analyses carried
out using their neutral forms. On this basis it was determined
that compound 6 adopts a conformation in the solid state in
which the two phenyl groups in the â-positions of the
thiophene are held above the effective macrocyclic cavity.
Presumably as a consequence, the sulfur atom of the
thiophene is forced to point out from the central macrocyclic
core. The presence of several solvent molecules (acetone)
is also seen in this structure. One of these is bound within
the central cavity of the macrocycle via an N4H-O3 (2.92
Å, 175°) hydrogen bond from one of the pyrrole rings, as
well as a weak C37H-O3 (3.33 Å, 141°) hydrogen bond
from one of the â-phenyl rings of the thiophene. A second
bound acetone molecule is coordinated via a hydrogen bond
(10) Picard, C.; Arnaud, N.; Tisne`s, P. Synthesis 2001, 1471-1478.
(11) Efforts to prepare an analogue of 6 lacking the â-phenyl substituents
were stymied by a lack of solubility.
5278
Org. Lett., Vol. 7, No. 23, 2005