C O M M U N I C A T I O N S
116, 2812. (c) White, J. D.; Choi, Y. Org. Lett. 2000, 2, 2373. (d) Engler,
T. A.; Letavic, M. A.; Lynch, K. O., Jr.; Takusagawa, F. J. Org. Chem.
1994, 59, 1179. (e) Engler, T. A.; Letavic, M. A.; Takusagawa, F.
Tetrahedron Lett. 1992, 33, 6731. (f) Breuning, M.; Corey, E. J. Org.
Lett. 2001, 3, 1559. Chelating ketone dienophiles: (g) Honda, Y.; Date,
T.; Hiramatsu, H.; Yamauchi, M. Chem. Commun. 1997, 1411. (h) Otto,
S.; Boccaletti, G.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1998, 120,
4238. (i) Otto, S.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1999, 121,
6798. (j) Schuster, T.; Bauch, M.; Durner, G.; Gobel, M. W. Org. Lett.
2000, 2, 179.
that small rings (ring size ) 5 or 6) were expected to exhibit
selectivities in accord with methyl ketone dienophiles because the
inherent conformational restrictions should allow participation of
both cis- and trans-iminium isomers in the Diels-Alder event.
However, as the dienophile ring size is expanded, we would expect
enhanced torsional freedom about the NdC-alkyl bond, a trend that
should increasingly shield the trans-iminium re-face (see MM3-
7) and accordingly improve asymmetric induction. In agreement
with this hypothesis, cyclopentenone and cyclohexenone provide
modest enantiocontrol (12-15:1 endo:exo, 48-63% ee, 81% yield),
while cycloheptenone (n ) 2), cyclooctenone (n ) 3), and (E)-
cyclopentadecene-2-one (n ) 10) are highly enantioselective (entries
3-5, 5-18:1 endo:exo, 90-93% ee, 83-88% yield).
Last, with respect to the operational and environmental advan-
tages of organocatalysis, it is important to note that all of the
cycloadditions reported herein were conducted in aqueous (Tables
1, 2, and 4) or ethanolic (Table 3) media. While the capacity of
protic solvents to accelerate [4 + 2] cycloadditions has long been
established,13 such reaction media are rarely amenable to chiral
metal salt catalysis.14 In this and in preceding reports,6 we have
demonstrated that iminium-catalysis and the accompanying imi-
dazolidinone catalysts are robust to aqueous conditions. We hope
this organocatalytic strategy will continue to provide a new platform
for the development of enantioselective processes that utilize
environmentally benign solvents.
(5) For notable examples of organocatalytic reactions, see: Aldol reaction:
(a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615. (b) Eder,
U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971, 10, 496.
(c) Agami, C.; Meyneir, F.; Puchot, C. Tetrahedron 1984, 40, 1031. (d)
List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
(e) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573. (f) List, B.
J. Am. Chem. Soc. 2000, 122, 9336. Phase-transfer catalysis: (g)
O’Donnell, M. J.; Bennett, W. D.; Wu, S. D. J. Am. Chem. Soc. 1989,
111, 2353. (h) Corey, E. J.; Bo, Y. X.; Busch-Petersen, J. J. Am. Chem.
Soc. 1998, 120, 13000. (i) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem.
Soc. 1997, 119, 12414. Epoxidation: (j) Yang, D.; Yip, Y. C.; Tang, M.
W.; Wong, M. K.; Zheng, J. H.; Cheung, K. K. J. Am. Chem. Soc. 1996,
118, 491. (k) Yang, D.; Wong, M. K.; Yip, Y. C.; Wang, X. C.; Tang, M.
W.; Zheng, J. H.; Cheung, K. K. J. Am. Chem. Soc. 1998, 120, 5943. (l)
Tu, Y.; Wang, Z. X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806. (m)
Tian, H. Q.; She, X. G.; Shu, L. H.; Yu, H. W.; Shi, Y. J. Am. Chem.
Soc. 2000, 122, 11551. (n) Denmark, S. E.; Wu, Z. C. Bayliss-Hillman
reaction: (o) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama,
S. J. Am. Chem. Soc. 1999, 120, 10219. (p) Corey, E. J.; Zhang, F. Y.
Org. Lett. 1999, 1, 1287. Asymmetric Strecker synthesis: (q) Vachal, P.;
Jacobsen, E. N. Org. Lett. 2000, 2, 867. (r) Sigman, M. S.; Vachal, P.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 1279. (s) Corey, E. J.;
Grogan, M. J. Org. Lett. 1999, 1, 157. Acyl transfer: (t) Jarvo, E. R.;
Copeland, G. T.; Papaioannou, N.; Bonitatebus, P. J.; Miller, S. J. J. Am.
Chem. Soc. 1999, 121, 11638. (u) For an excellent review on enantiose-
lective organocatalysis see: Dalko, P. I.; Moisan, L. Angew. Chem., Int.
Ed. 2001, 40, 3726.
In summary, the scope of LUMO-lowering organocatalysis has
been extended to accomplish the first general enantioselective
ketone Diels-Alder reaction. A full disclosure of these studies will
be reported in due course.
(6) Diels-Alder: (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2000, 122, 4243. Nitrone cycloaddition: (b) Jen, W. S.;
Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122,
9874. Friedel-Crafts: (c) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2001, 123, 4370. (d) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2002, 124, 1172.
(7) The Beilstein database reports 7924 examples of tetrasubstituted iminium
ions. Prior to this investigation, only examples that involve intramolecular
formation of tetrasubstituted iminium ions have been accomplished
selectively.
(8) Only catalysts that bear an aryl substituent at C(5) of the imidazolidinone
ring exhibit enantioselectivity in this reaction. Investigations are currently
underway to determine the origins of this phenomenon.
Acknowledgment. Financial support was provided by kind gifts
from AstraZeneca, Boehringer-Ingelheim, Dupont, GlaxoSmith-
Kline, Johnson and Johnson, Lilly, Materia, Merck Research
Laboratories, Pfizer, Pharmacia, and Roche Biosciences. We also
thank Great Lakes for their generous donation of (S)-phenylalanine.
D.W.C.M is grateful for support from Research Corporation under
the Cottrell Scholarship program. A.B.N. is grateful for a NSF
predoctoral fellowship.
(9) The C(2)-CH2Ar motif in catalyst 1 is required for selective iminium
formation; Ahrendt, K. A., unpublished results.
(10) Preparation of (2S,5S)-5-benzyl-3-methyl-2-(5-methyl-furan-2-yl)-imida-
zolidin-4-one (catalyst 5): To Sm(OTf)3 (1.20 g, 2.0 mmol) were added
powdered 4 Å molecular sieves (4.0 g), followed by (S)-phenylalanine
methyl amide (8.91 g, 50 mmol) in THF (80 mL). To the resulting mixture
was added 5-methylfurfural (3.98 mL, 40 mmol). After stirring for 29 h
at 23 °C, the mixture was filtered through a plug of silica gel, concentrated,
and purified by silica gel chromatography to afford the title compound as
a clear, colorless oil in 46% yield (4.93 g, 18.2 mmol). The faster eluting
(2R,5S)-5-benzyl-3-methyl-2-(5-methyl-furan-2-yl)-imidazolidin-4-one iso-
mer was isolated in 38% yield.
(11) Representative procedure: To a flask containing catalyst 5 (20 mol %) in
H2O (3-7 M) at 0 °C was added the R,â-unsaturated ketone (100 mol
%) followed by aqueous perchloric acid (20 mol %). After stirring for 5
min, freshly distilled cyclopentadiene (150 mol %) was added dropwise.
The resulting mixture was stirred at 0 °C until consumption of the
unsaturated ketone as determined by TLC analysis. The reaction mixture
was then diluted with the appropriate eluent and then purified by silica
gel chromatography.
Note Added in Proof. Shortly prior to publication it came to
the authors attention that an enantioselective boron-catalyzed ketone
Diels-Alder reaction has been accomplished. This work will be
submitted for communication in the near future. Joel M. Hawkins,
Pfizer Global Research, personal communication.
Supporting Information Available: Experimental procedures,
structural proofs, and spectral data for all new compounds are provided
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
(12) A Monte Carlo simulation using the MM3 force-field; Macromodel V6.5.
(13) (a) Breslow, R.; Rideout, D. J. Am. Chem. Soc. 1980, 102, 7816. (b)
Grieco, P. A.; Garner, P.; He, Z. Tetrahedron Lett. 1983, 24, 1897. (c)
Gajewski, J. J. J. Org. Chem. 1992, 57, 5500. (d) Otto, S.; Blokzijl, W.;
Engberts, J. B. F. N. J. Org. Chem. 1994, 59, 5372. (e) Engberts, J. B. F.
N. Pure Appl. Chem. 1995, 67, 823. (f) Otto, S.; Engberts, J. B. F. N.
Pure Appl. Chem. 2000, 72, 1365.
(14) For examples of highly enantioselective (>90% ee) metal-catalyzed
transformations that employ H2O as the bulk reaction medium see: (a)
Green Chemistry; Anastas, P. T., Williamson, T. C., Eds.; ACS Sympo-
sium Series 626; American Chemical Society: Washington: DC, 1996
and references therein. (b) Li, C.-J.; Chan, T.-H. Organic Reactions in
Aqueous Media; Wiley: New York, 1997. (c) Grieco, P. A., Ed. Organic
Synthesis in Water; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 1997. (d) Uozumi, Y.; Shibatomi, K. J. Am. Chem. Soc. 2001,
123, 2919. (e) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E.
N. Science 1997, 277, 936.
References
(1) (a) Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98. (b)
Norton, J. A. Chem. ReV. 1942, 42, 319. (c) Huisgen, R.; Grashey, R.;
Sauer, J. In The Chemistry of the Alkenes; Patai, S., Ed.; Wiley: London,
1964; 739.
(2) For recent reviews of enantioselective Diels-Alder reactions, see: (a)
Evans, D. A.; Johnson, J. S. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York,
1999; Vol. 3, 1177 and references therein. (b) Oppolzer, W. In
ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon Press:
New York, 1991; Vol. 5. (c) Kagan, H. B.; Riant, O. Chem. ReV. 1992,
92, 1007. (d) Dias, L. C. J. Braz. Chem. Soc. 1997, 8, 289.
(3) A survey of the CAS database (Scifinder) reveals >500 manuscripts or
patents related to asymmetric catalysis of the Diels-Alder reaction.
(4) Only quinone and chelating ketone dienophiles have been successfully
utilized in asymmetric Diels-Alder reactions. Quinones: (a) Mikami, K.;
Terada, M.; Motoyama, Y.; Nakai, T. Tetrahedron: Asymmetry 1991, 2,
643. (b) Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc. 1994,
JA017641U
9
2460 J. AM. CHEM. SOC. VOL. 124, NO. 11, 2002