D. Vione et al. / Chemosphere 45 -2001) 893±902
901
Dzengel, J., Theurich, J., Bahnemann, D., 1999a. Formation of
nitroaromatic compounds in advanced oxidation processes:
photolysis versus photocatalysis. Environ. Sci. Technol. 33,
294±300.
probably responsible for the formation of 4-nitros-
ophenol.
The formation of nitrophenols can also occur via the
oxidation of the nitrosoderivatives, which takes place in
the presence of nitrite, light and oxygen. This process
probably has a role comparable with that of the nitra-
Dzengel, J., Theurich, J., Bahnemann, D., 1999b. Response to
comment on formation of nitroaromatic compounds in
advanced oxidation processes: photolysis versus photoca-
talysis. Environ. Sci. Technol. 33, 3282.
Å
tion via NO2.
2-Propanol acts as a scavenger of ÅOH, but very
Eberhardt, M.K., 1975. Radiation-induced homolytic aromatic
substitution. III. Hydroxylation and nitration of benzene. J.
Phys. Chem. 79, 1067±1069.
Å
probably it does not deplete NO2. On the contrary, it
Å
can lower NO and N2O3 concentration levels through
Fischer, M., Warneck, P., 1996. Photodecomposition of nitrite
and undissociated nitrous acid in aqueous solution. J. Phys.
Chem. 100, 18749±18756.
generation of active oxygen species. The consequence is
an almost complete inhibition of the formation of 4-ni-
trosophenol, together with a partial depletion of nitro-
phenol formation.
Gratzel, M., Henglein, A., Lilie, J., Beck, G., 1969. Pulsradio-
lytische Untersuchung einiger Elementarprozesse der Oxy-
dation und Reduktion des Nitritions. Ber. Bunsenges. Phys.
Chem. 73, 646±653.
The early steps in reaction pathways proposed for the
transformation of phenol in the presence of nitrite are
reported in Scheme 2. Studies on the detailed kinetic
aspects of the system 3dependence on the type of sub-
strate and its concentration as well as on O2 and NO2À
concentration) are under way in order to gain more in-
sight about the ®ner details of the overall photonitration
and nitrosation process 3Vione et al., 2001c).
Gratzel, M., Taniguchi, S., Henglein, A., 1970. Pulsradiolyti-
sche Untersuchung der NO-Oxydation und des Gle-
ichgewichts N2O3 $ NO NO2 in waûriger Losung. Ber.
Bunsenges. Phys. Chem. 74, 488.
Guidelines for Drinking-Water Quality, 1996. second ed. World
Health Organisation, Geneva, pp. 313±323.
ꢁ
Hoigne, J., 1990. Formulation and calibration of environmental
reaction kinetics: oxidations by aqueous photooxidants as
an example. In: Stumm, W., 3Ed.), Aquatic Chemical
Kinetics, Wiley 3Chapter 2) pp. 43±70.
Acknowledgements
accessed July 2000.
Financial support of CNR, MURST and PNRA
Progetto Antartide is kindly appreciated.
Louw, R., Santoro, D., 1999. Comment on formation of
nitroaromatic compounds in advanced oxidation processes:
photolysis versus photocatalysis. Environ. Sci. Technol. 33,
3281.
References
Machado, F., Boule, P., 1995. Photonitration and photonitro-
sation of phenolic derivatives induced in aqueous solution
by excitation of nitrite and nitrate ions. J. Photochem.
Photobiol. A: Chem. 86, 73±80.
Alfassi, Z.B., Huie, R.E., Neta, P., Shoute, C.T., 1990.
Temperature dependence of the rate constants for reaction
of inorganic radicals with organic reductants. J. Phys.
Chem. 94, 8800±8805.
Niessen, R., Lenoir, D., Boule, P., 1988. Phototransformations
of phenol induced by excitation of nitrate ions. Chemo-
sphere 17, 1977±1984.
Arakaki, T., Miyake, T., Hirakawa, T., Sakugawa, H., 1999.
pH dependent photoformation of hydroxyl radical and
absorbance of aqueous-phase N3III) 3HNO2 and NOÀ2 ).
Environ. Sci. Technol. 33, 2561±2565.
Pietsch, E., Meyer, R.J., 1936. Gmelins Handbuch der Anor-
ganischen Chemie, vol. 4 3Sticksto), Verlag Chemie, Berlin,
p. 725.
Boule, P., Bolte, M., Richard, C., 1999. Phototransformations
induced in aquatic media by NOÀ3 NO2À, FeIII and humic
substances. In: Boule, P., 3Ed.), The Handbook of Envi-
ronmental Chemistry, vol. 2.L 3Environmental Photochem-
istry), Springer, Berlin, pp. 181±215.
Pires, M., Rossi, M.J., Ross, S.R., 1994. Kinetic and mecha-
nistic aspects of the NO oxidation by O2 in aqueous phase.
Int. J. Chem. Kinetics 26, 1207±1227.
Pitts, J.N., Arey, J.S., Zielinska, B., Winer, A.M., Atkinson,
R., 1985. Determination of 2-nitro¯uoranthene and 2-
nitropyrene in ambient particulate organic matter: evi-
dence for atmospheric reactions. Atmos. Environ. 19,
1601±1608.
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B.,
1988. Critical review of rate constants for reactions of
hydratedÀelectrons, hydrogen atoms and hydroxyl radicals
Å
ꢁ OH=ÅO in aqueous solution. J. Phys. Chem. Ref. Data
17, 1027±1284.
Ridd, J.H., 1998. Some unconventional pathways in aromatic
nitration. Acta Chem. Scand. 52, 11±22.
Coombes, R.G., Diggle, A.W., Kempsell, S.P., 1994. The
mechanism of nitration of phenol and 4-methylphenol by
nitrogen dioxide in solution. Tetrahedron Lett. 35, 6373±
6376.
Uemura, S., Toshimitsu, A., Okano, M., 1978. Nitration of
aromatic hydrocarbons and ipso-nitrosodemetallation of
arylmetal compounds in sodium nitrite-tri¯uoroacetic acid.
J. Chem. Soc. Perkin Trans. I, 1076±1079.
Dixon, W.T., Murphy, D., 1976. Determination of the acidity
constants of some phenol radical cations by means of
electron spin resonance. J. Chem. Soc., Faraday Trans. II,
1221±1230.
Vione, D., 1998. Trasformazioni del fenolo indotte dalla fotolisi
UV di ioni nitrato e nitrito in soluzione acquosa. Thesis,
University of Torino.