4304
J . Org. Chem. 2002, 67, 4304-4308
2-P yr id on es fr om Cya n oa ceta m id es a n d En eca r bon yl Com p ou n d s:
Ap p lica tion to th e Syn th esis of Noth a p od ytin e B
Lionel Carles, Kesavaram Narkunan, Se´bastien Penlou, Laurence Rousset,†
Denis Bouchu,† and Marco A. Ciufolini*
Laboratoire de Synthe`se et Me´thodologie Organiques (LSMO)-UMR CNRS 5078,
Universite´ Claude Bernard Lyon 1 and Ecole Supe´rieure de Chimie, Physique,
Electronique de Lyon, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
ciufi@cpe.fr
Received J anuary 22, 2002
The condensation of an enone or enal with cyanoacetamide derivatives and t-BuOK furnishes either
3-cyano-2-pyridones or 3-unsubstituted-2-pyridones, depending on whether the reaction is carried
out in the presence or in the absence of O2. In the first case, in situ oxidation of Michael-type
intermediates takes place; in the second case, the products result from “decyanidative aromatization”
of such intermediates. A one-step synthesis of 3-alkyl-2-pyridones has been devised on the basis of
decyanative union of an enone/enal and a 2-alkylcyanoacetamide. The new reaction forms the
centerpiece of an unusually concise synthesis of nothapodytine B (mappicine ketone).
In tr od u ction
this transformation on significant scales may result in
formation of variable quantities of descyano pyridones
4, which become the major, or even the exclusive,
products with particular substrates (Scheme 1).
Compounds 4 emerge through the fusion of an enecar-
bonyl compound and an active methylene agent, in a [3
+ 3] mode, via “de-cyanidative aromatization” of an
intermediate Michael adduct. 2-Pyridones unsubstituted
at C-3 are customarily obtained through cyclization of
2-Pyridones are of significant interest in current
medicinal chemistry.1 Many syntheses of these hetero-
cycles2 proceed through the regioselective cycloconden-
sation of an acetonitrile derivative (cyanoacetate ester,3
cyanoacetamide,4 or malononitrile5) with an appropriate
carbonyl substrate in a [3 + 3] mode, resulting in overall
formation of 3-cyano-2-pyridones. The efficiency of these
reactions is somewhat variable: good results are obtained
in some cases, but moderate to mediocre yields are not
uncommon. In 1995, we described a technique to effect
the union of various enones and enals 1 with cyano-
acetamide 2 (R4 ) H), leading to 3-cyano-2-pyridones 3
in good to excellent yield, by operating in DMSO and in
the presence of excess t-BuOK under an oxygen atmo-
sphere.6,7 We have recently observed that the conduct of
(4) Representative examples of the principal classes of reactions
leading to pyridones through condensation of cyanoacetamide with the
following. (i) Enones or â-dicarbonyl compounds: (a) Salman, A. S. S.
Pharmazie 1999, 54, 178. (b) Attia, A.; Abdel-Salam, O. I.; Abo-Ghalia,
M. H.; Amr, A. E. Egypt. J . Chem. 1995, 38, 543. (c) Attia, A. M. E.;
Elgemeie, G. E. H. Nucleosides Nucleotides 1995, 14, 1211. (d) Mijin,
D. Z.; Misic-Vukovic, M. M. Indian J . Chem. Sect. B 1995, 34, 348. (e)
Attia, A.; Abo-Ghalia, M. H.; El-Salam, O. I. A. Pharmazie 1995, 50,
455. (f) O’Callaghan, C. N.; McMurry, T. B. H.; Cardin, C. J .; Wilcock,
D. J . J . Chem. Soc., Perkin Trans. 1 1993, 2479. (g) Elgemeie, G. E.
H.; El-Zanate, A. M.; Mansour, A.-K. E. Bull. Chem. Soc. J pn. 1993,
66, 555. (h) Elgemeie, G. E. H.; Ali, H. A.; Eid, M. M. J . Chem. Res.
Miniprint 1993, 7, 1517. (i) Kaiho, T.; San-nohe, K.; Kajiya, S.; Suzuki,
T.; Otsuka, K.; et al. J . Med. Chem. 1989, 32, 351. (j) Paronikyan, E.
G.; Sirakanyan, S. N.; Lindeman, S. V.; Aleksanyan, M. S.; Karapetyan,
A. A.; et al. Chem. Heterocycl. Compd. (Engl. Transl.) 1989, 25, 953.
(k) Hishmat, O. H.; Miky, J . A. A.; Saleh, N. M. Pharmazie 1989, 44,
823. (l) Singh, L. W.; Ila, H.; J unjappa, H. Indian J . Chem. Sect. B
1987, 26, 607. (m) Shestopalov, A. M.; Sharanin, Yu. A. J . Org. Chem.
USSR (Engl. Transl.) 1986, 22, 1163. (n) Al-Hajjar, F. H.; J arrar, A.
A. J . Heterocycl. Chem. 1980, 17, 1521. (ii) Ynones: see ref 4n. See
also ref 2.
(5) Representative examples of the principal classes of reactions
leading to pyridones through condensation of various acceptors with
malononitrile derivatives: (a) Kandeel, K. A.; Vernon, J . M.; Dransfield,
T. A.; Fouli, F. A.; Youssef, A. S. A. J . Chem. Res. Miniprint 1990, 9,
2101. (b) Alberola, A.; Andres, C.; Ortega, A. G.; Pedrosa, R.; Vicente,
M. J . Heterocycl. Chem. 1987, 24, 709. (c) Rodinovskaya, L. A.;
Sharanin, Y. A.; Litvinov, V. P.; Shestopalov, A. M.; Promonenkov, V.
K.; et al. J . Org. Chem. USSR (Engl. Transl.) 1985, 21, 2230. (d)
Nasakin, O. E.; Nikolaev, E. G.; Terent’ev, P. B.; Bulai, A. K.; Zakharov,
V. Y. Chem. Heterocycl. Compd. (Engl. Transl.) 1985, 21, 1019. See
also ref 2.
† Mass spectral facility of the LSMO.
(1) E.g.: Nadin, A.; Harrison, T. Tetrahedron Lett. 1999, 40, 4073
and references cited therein.
(2) Reviews on the synthesis of pyridones: (a) McKillop, A.; Boulton,
A. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees,
C. W., Eds.; Pergamon Press: New York, 1984; Vol. 2, Part 2A, p 67 ff.
(b) J ones, G. In Comprehensive Heterocylic Chemistry; Katritzky, A.
R., Rees, C. W., Eds.; Pergamon Press: New York, 1984; Vol. 2, Part
2A, p 395.
(3) Representative examples of the principal classes of reactions
leading to pyridones through condensation of cyanoacetic esters and
ammonium salts (source of ammonia) with: (i) preformed enones or
Knoevenagel adducts, or ketone/aldehyde pairs (in situ formation of
enones or Knoevenagel adducts): (a) Abadi, A.; Al-Deeb, O.; Al-Afify,
A.; El-Kashef, H. Farmaco 1999, 54, 195. (b) El-Emary, T. I.; Bakhite,
E. A. Pharmazie 1999, 54, 106. (c) Grant, N.; Mishriky, N.; Asaad, F.
M.; Fawzy, N. G. Pharmazie 1998, 53, 543. (d) Abadi, A. H.; Al-
Khamees, H. A. Arch. Pharm. 1998, 331, 319. (e) Kamel, M. M.; Omar,
M. T.; Refai, M.; Fahmy, H. H.; Nofal, Z.; Ismail, N. S. Egypt. J . Chem.
1996, 39, 591. (f) Hataba, A. A. Pol. J . Chem. 1996, 70, 41. (g) Latif,
N.; Mishriky, N.; Haggag, B.; Basyouni, W. Indian J . Chem. Sect. B
1995, 24, 1230. (h) Ibrahim, E. S.; Elgemeie, G. E. H.; Abbasi, M. M.;
Abbas, Y. A.; Elbadawi, M. A.; Attia, A. M. E. Nucleosides Nucleotides
1995, 14, 1415. (i) Manna, F.; Chimenti, F.; Bolasco, A.; Filippelli, A.;
Palla, A.; et al.; Eur. J . Med. Chem. Chim. Ther. 1992, 27, 627. (j)
Moustafa, A. H.; Kaddah, A. M.; El-Abbady, S. A.; Gado, S. H. J . Prakt.
Chem. 1982, 324, 1045. (k) Chorvat, R. J .; Desai, B. N. J . Heterocycl.
Chem. 1980, 17, 1313. (ii) â-Enaminones and related substances: (l)
Badr, M. Z. A.; Geies, A. A.; Abbady, M. S.; Dahy, A. A. Can. J . Chem.
1998, 76, 469. (m) Al-Omran, F.; Khalik, M. M. A.; Al-Awadhi, H.;
Elnagdi, M. H. Tetrahedron 1996, 52, 11915. See also ref 2.
(6) (a) J ain, R.; Roschangar, F.; Ciufolini, M. A. Tetrahedron Lett.
1995, 36, 3307. This work was based on an observation reported by:
(b) Al-Hajjar, F. H.; J arrar, A. A. J . Heterocycl. Chem. 1980, 17, 1521.
(7) This general type of reaction was featured in a total synthesis
of (+)-camptothecin: (a) Ciufolini, M. A.; Roschangar, F. Angew. Chem.
1996, 108, 1789. (b) Ciufolini, M. A.; Roschangar, F. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1692. (c) Ciufolini, M. A.; Roschangar, F.
Tetrahedron 1997, 53, 11049.
10.1021/jo025546d CCC: $22.00 © 2002 American Chemical Society
Published on Web 05/18/2002