ACS Chemical Biology
Articles
(8) Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J.,
Weissman, J. S., and Walter, P. (2000) Functional and genomic
analyses reveal an essential coordination between the unfolded
protein response and ER-associated degradation. Cell 101, 249−258.
(9) Shore, G. C., Papa, F. R., and Oakes, S. A. (2011) Signaling cell
death from the endoplasmic reticulum stress response. Curr. Opin.
Cell Biol. 23, 143−149.
(10) Han, D., Lerner, A. G., Vande Walle, L., Upton, J. P., Xu, W.,
Hagen, A., Backes, B. J., Oakes, S. A., and Papa, F. R. (2009)
IRE1alpha kinase activation modes control alternate endoribonuclease
outputs to determine divergent cell fates. Cell 138, 562−575.
(11) Wang, X. Z., Harding, H. P., Zhang, Y., Jolicoeur, E. M.,
Kuroda, M., and Ron, D. (1998) Cloning of mammalian Ire1 reveals
diversity in the ER stress responses. EMBO J. 17, 5708−5717.
(12) Ali, M. M., Bagratuni, T., Davenport, E. L., Nowak, P. R., Silva-
Santisteban, M. C., Hardcastle, A., McAndrews, C., Rowlands, M. G.,
Morgan, G. J., Aherne, W., Collins, I., Davies, F. E., and Pearl, L. H.
(2011) Structure of the Ire1 autophosphorylation complex and
implications for the unfolded protein response. EMBO J. 30, 894−
905.
(13) Lee, K. P., Dey, M., Neculai, D., Cao, C., Dever, T. E., and
Sicheri, F. (2008) Structure of the dual enzyme Ire1 reveals the basis
for catalysis and regulation in nonconventional RNA splicing. Cell
132, 89−100.
(14) Lu, Y., Liang, F. X., and Wang, X. (2014) A synthetic biology
approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell
55, 758−770.
(15) Kosmaczewski, S. G., Edwards, T. J., Han, S. M., Eckwahl, M. J.,
Meyer, B. I., Peach, S., Hesselberth, J. R., Wolin, S. L., and
Hammarlund, M. (2014) The RtcB RNA ligase is an essential
component of the metazoan unfolded protein response. EMBO Rep.
15, 1278−1285.
(16) Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R.,
Harding, H. P., Clark, S. G., and Ron, D. (2002) IRE1 couples
endoplasmic reticulum load to secretory capacity by processing the
XBP-1 mRNA. Nature 415, 92−96.
(17) Hollien, J., Lin, J. H., Li, H., Stevens, N., Walter, P., and
Weissman, J. S. (2009) Regulated Ire1-dependent decay of messenger
RNAs in mammalian cells. J. Cell Biol. 186, 323−331.
(18) Hollien, J., and Weissman, J. S. (2006) Decay of endoplasmic
reticulum-localized mRNAs during the unfolded protein response.
Science 313, 104−107.
(19) Lerner, A. G., Upton, J. P., Praveen, P. V., Ghosh, R.,
Nakagawa, Y., Igbaria, A., Shen, S., Nguyen, V., Backes, B. J., Heiman,
M., Heintz, N., Greengard, P., Hui, S., Tang, Q., Trusina, A., Oakes, S.
A., and Papa, F. R. (2012) IRE1alpha induces thioredoxin-interacting
protein to activate the NLRP3 inflammasome and promote
programmed cell death under irremediable ER stress. Cell Metab.
16, 250−264.
(20) Upton, J. P., Wang, L., Han, D., Wang, E. S., Huskey, N. E.,
Lim, L., Truitt, M., McManus, M. T., Ruggero, D., Goga, A., Papa, F.
R., and Oakes, S. A. (2012) IRE1alpha cleaves select microRNAs
during ER stress to derepress translation of proapoptotic Caspase-2.
Science 338, 818−822.
(21) Bertolotti, A., Wang, X., Novoa, I., Jungreis, R., Schlessinger, K.,
Cho, J. H., West, A. B., and Ron, D. (2001) Increased sensitivity to
dextran sodium sulfate colitis in IRE1beta-deficient mice. J. Clin.
Invest. 107, 585−593.
(22) Imagawa, Y., Hosoda, A., Sasaka, S.-I., Tsuru, A., and Kohno, K.
(2008) RNase domains determine the functional difference between
IRE1α and IRE1β. FEBS Lett. 582, 656−660.
(25) Martino, M. B., Jones, L., Brighton, B., Ehre, C., Abdulah, L.,
Davis, C. W., Ron, D., O'Neal, W. K., and Ribeiro, C. M. P. (2013)
The ER stress transducer IRE1β is required for airway epithelial
mucin production. Mucosal Immunol. 6, 639−654.
(26) Hauber, H.-P., Foley, S. C., and Hamid, Q. (2006) Mucin
Overproduction in Chronic Inflammatory Lung Disease. Can. Respir.
J. 13, 327−335.
(27) Iqbal, J., Dai, K., Seimon, T., Jungreis, R., Oyadomari, M.,
Kuriakose, G., Ron, D., Tabas, I., and Hussain, M. M. (2008) IRE1β
Inhibits Chylomicron Production by Selectively Degrading MTP
mRNA. Cell Metab. 7, 445−455.
(28) Wang, L., Perera, B. G., Hari, S. B., Bhhatarai, B., Backes, B. J.,
Seeliger, M. A., Schurer, S. C., Oakes, S. A., Papa, F. R., and Maly, D.
J. (2012) Divergent allosteric control of the IRE1alpha endoribonu-
clease using kinase inhibitors. Nat. Chem. Biol. 8, 982−989.
(29) Feldman, H. C., Tong, M., Wang, L., Meza-Acevedo, R.,
Gobillot, T. A., Lebedev, I., Gliedt, M. J., Hari, S. B., Mitra, A. K.,
Backes, B. J., Papa, F. R., Seeliger, M. A., and Maly, D. J. (2016)
Structural and Functional Analysis of the Allosteric Inhibition of
IRE1α with ATP-Competitive Ligands. ACS Chem. Biol. 11, 2195−
2205.
(30) Papa, F. R., Zhang, C., Shokat, K., and Walter, P. (2003)
Bypassing a kinase activity with an ATP-competitive drug. Science 302,
1533−1537.
(31) Harrington, P. E., Biswas, K., Malwitz, D., Tasker, A. S., Mohr,
C., Andrews, K. L., Dellamaggiore, K., Kendall, R., Beckmann, H.,
Jaeckel, P., Materna-Reichelt, S., Allen, J. R., and Lipford, J. R. (2015)
Unfolded Protein Response in Cancer: IRE1alpha Inhibition by
Selective Kinase Ligands Does Not Impair Tumor Cell Viability. ACS
Med. Chem. Lett. 6, 68−72.
(32) Golkowski, M., Vidadala, R. S. R., Lombard, C. K., Suh, H. W.,
Maly, D. J., and Ong, S.-E. (2017) Kinobead and Single-Shot LC-MS
Profiling Identifies Selective PKD Inhibitors. J. Proteome Res. 16,
1216−1227.
(33) Bantscheff, M., Eberhard, D., Abraham, Y., Bastuck, S., Boesche,
M., Hobson, S., Mathieson, T., Perrin, J., Raida, M., Rau, C., Reader,
V., Sweetman, G., Bauer, A., Bouwmeester, T., Hopf, C., Kruse, U.,
Neubauer, G., Ramsden, N., Rick, J., Kuster, B., and Drewes, G.
(2007) Quantitative chemical proteomics reveals mechanisms of
action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035−
1044.
(34) Golkowski, M., Perera, G. K., Vidadala, V. N., Ojo, K. K., Van
Voorhis, W. C., Maly, D. J., and Ong, S. E. (2018) Kinome
chemoproteomics characterization of pyrrolo[3,4-c]pyrazoles as
potent and selective inhibitors of glycogen synthase kinase 3. Mol.
Omics 14, 26−36.
(35) Morita, S., Villalta, S. A., Feldman, H. C., Register, A. C.,
Rosenthal, W., Hoffmann-Petersen, I. T., Mehdizadeh, M., Ghosh, R.,
Wang, L., Colon-Negron, K., Meza-Acevedo, R., Backes, B. J., Maly,
D. J., Bluestone, J. A., and Papa, F. R. (2017) Targeting ABL-IRE1α
Signaling Spares ER-Stressed Pancreatic β Cells to Reverse Auto-
immune Diabetes. Cell Metab. 25, 1207.
̈
(36) Alexander, L. T., Mobitz, H., Drueckes, P., Savitsky, P.,
Fedorov, O., Elkins, J. M., Deane, C. M., Cowan-Jacob, S. W., and
Knapp, S. (2015) Type II Inhibitors Targeting CDK2. ACS Chem.
Biol. 10, 2116−2125.
(37) Wiseman, R. L., Zhang, Y., Lee, K. P., Harding, H. P., Haynes,
C. M., Price, J., Sicheri, F., and Ron, D. (2010) Flavonol Activation
Defines an Unanticipated Ligand-Binding Site in the Kinase-RNase
Domain of IRE1. Mol. Cell 38, 291−304.
(38) Sanches, M., Duffy, N. M., Talukdar, M., Thevakumaran, N.,
Chiovitti, D., Canny, M. D., Lee, K., Kurinov, I., Uehling, D., Al-awar,
R., Poda, G., Prakesch, M., Wilson, B., Tam, V., Schweitzer, C., Toro,
A., Lucas, J. L., Vuga, D., Lehmann, L., Durocher, D., Zeng, Q.,
Patterson, J. B., and Sicheri, F. (2014) Structure and mechanism of
action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease
inhibitors. Nat. Commun. 5, 4202.
(23) Nakamura, D., Tsuru, A., Ikegami, K., Imagawa, Y., Fujimoto,
N., and Kohno, K. (2011) Mammalian ER stress sensor IRE1β
specifically down-regulates the synthesis of secretory pathway
proteins. FEBS Lett. 585, 133−138.
(24) Iwawaki, T., Hosoda, A., Okuda, T., Kamigori, Y., Nomura-
Furuwatari, C., Kimata, Y., Tsuru, A., and Kohno, K. (2001)
Translational control by the ER transmembrane kinase/ribonuclease
IRE1 under ER stress. Nat. Cell Biol. 3, 158−164.
(39) Korennykh, A. V., Egea, P. F., Korostelev, A. A., Finer-Moore,
J., Zhang, C., Shokat, K. M., Stroud, R. M., and Walter, P. (2009) The
J
ACS Chem. Biol. XXXX, XXX, XXX−XXX