3
The increasing of fluorescence polarization signal reflects the
binding of 14-3-3 ζ to the fluorescent peptides. The polarization
signal changes were respectively fitted to the saturation titration
Peptide-OP 5 and Peptide-CP 6 was 100 nM. The concentration of
14-3-3 ζ was 5 μM.
12
Equation 1 (Supporting Information, SI), generating the K
values. As shown in Figure 4a, Peptide-CP 6 displays a K value
of 0.86 μM, which is close to the K value of Peptide-OP 5 (0.46
D
Acknowledgments
D
D
This work was supported by grants from the Major State Basic
Research Development Program of China (2013CB910700) and
the National Natural Science Foundation of China (21372140).
μM) binding to 14-3-3 ζ. The results indicate that the substitution
of pSer by phosphonate pSer mimetic slightly reduces the
binding affinity of peptide substrate (RLYHpSLPA) to 14-3-3 ζ,
proving that Peptide-CP 6 can be used as an inhibitor of 14-3-3 ζ.
We deduced that the slightly reduced binding affinity might be
References and notes
caused by the less electronegativity of CH
phosphonate pSer mimetic compared to that of pSer.
2
-substituted
1.
(a) Hunter, T. Cell. 2000, 100, 113-127.
(b) McCubrey, J. A.; May, W. S.; Duronio, V.; Mufson, A. Leukemia.
2
000, 14, 9-21.
In addition, we detected the association between these peptides
and 14-3-3 ζ in the presence or absence of alkaline phosphatase
by using fluorescence polarization assay. As mentioned above,
the strength of fluorescence polarization signal reflects the degree
of 14-3-3 ζ binding to these fluorescent peptides. As shown in
Figure 4b, the addition of alkaline phosphatase clearly disrupted
the association of Peptide-OP 5 with 14-3-3 ζ due to the removal
of phosphate group from serine, while the binding of Peptide-CP
(
(
(
c) Cohen, P. Nat Cell Biol. 2002, 4, 127-130.
d) Hunter, T. Cell. 1995, 80, 225-236.
e) Seet, B. T.; Dikic, I.; Zhou, M.-M.; Pawson, T. Nat Rev Mol Cell
Biol. 2006, 7, 473-483.
2. Watanabe, N.; Osada, H. Curr Drug Targets. 2012, 13, 1654-1658.
3
.
Na, Z.; Pan, S.; Uttamchandani, M.; Yao, S. Q. Angew Chem Int Ed.
014, 53, 8421-8426.
Ma, M.-R.; Hu, Z.-W.; Zhao, Y.-F.; Chen, Y.-X.; Li, Y.-M. Sci Rep.
016, 6, 37130.
2
4
.
2
6
to 14-3-3 ζ kept intact in the presence of alkaline phosphatase.
5.
(a) Arrendale, A.; Kim, K.; Choi, J. Y.; Li, W.; Geahlen, R. L.; Borch,
These results demonstrate that Peptide-CP containing
6
R. F. Chem Biol. 2012, 19, 764-771.
(b) Tarrant, M. K.; Rho, H. S.; Xie, Z.; Jiang, Y. L.; Gross, C.; Culhane,
phosphonate pSer analogue can be developed as useful tools for
probing and regulating 14-3-3 ζ involved PPI networks in cellular
context.
J. C.; Yan, G.; Qian, J.; Ichikawa, Y.; Matsuoka, T.; Zachara, N.;
Etzkorn, F. A.; Hart, G. W.; Jeong, J. S.; Blackshaw, S.; Zhu, H.; Cole,
P. A. Nat Chem Biol. 2012, 8, 262-269.
In conclusion, we have developed a facile and efficient
synthesis route for producing Fmoc-protected phosphonate pSer
analogue. This synthetic approach has the potential to be used for
generating pSer mimetics bearing biorthogonal protecting groups
on phosphonate. In addition, the prepared phosphonate pSer
analogue has been successfully applied in the solid-phase
synthesis of a phosphatase-resistant substrate peptide of 14-3-3 ζ,
retaining 14-3-3 ζ binding efficacy similar to the parent pSer-
containing peptide.
(c) Klingberg, R.; Jost, J. O.; Schumann, M.; Gelato, K. A.; Fischle, W.;
Krause, E.; Schwarzer, D. ACS Chem Biol. 2015, 10 , 138-145.
(
d) Rogerson, D. T.; Sachdeva, A.; Wang, K.; Haq, T.; Kazlauskaite,
A.; Hancock, S. M.; Huguenin-Dezot, N.; Muqit, M. M.; Fry, A. M.;
Bayliss, R.; Chin, J. W. Nat Chem Biol. 2015, 11, 496-503.
(a) Aghazadeh, Y.; Papadopoulos, V. Drug Discov Today. 2016, 21,
6
.
2
78-287.
(b) Aitken, A. Semin Cancer Biol. 2006, 16, 162-172.
(
(
c) Hermeking, H. Nat Rev Cancer. 2003, 3, 931-943.
d) Neal, C. L.; Yu, D. Expert Opin Ther Tar. 2010, 14, 1343-1354.
(
e) Niemantsverdriet, M.; Wagner, K.; Visser, M.; Backendorf, C.
Oncogene. 2008, 27, 1315-1319.
(
f) Fan, T.; Li, R.; Todd, N. W.; Qiu, Q.; Fang, H. B.; Wang, H.; Shen,
J.; Zhao, R. Y.; Caraway, N. P.; Katz, R. L.; Stass, S. A.; Jiang, F.
Cancer Res. 2007, 67, 7901-7906.
(a) Rittinger, K.; Budman, J.; Xu, J.; Volinia, S.; Cantley, L. C.;
Smerdon, S. J.; Gamblin, S. J.; Yaffe, M. B. Mol Cell. 1999, 4, 153-166.
7
8
.
.
(
b) Vazquez, M. E.; Nitz, M.; Stehn, J.; Yaffe, M. B.; Imperiali, B. J Am
Chem Soc. 2003, 125, 10150-10151.
(a) Hamilton, R.; Shute, R. E.; Travers, J.; Walker, B.; Walker, B. J.
Tetrahedron Lett. 1994, 35, 3597-3600.
(
b) Shapiro, G.; Buechler, D.; Ojea, V.; Pombovillar, E.; Ruiz, M.;
Weber, H. P. Tetrahedron Lett. 1993, 34, 6255-6258.
c) Rigger, L.; Schmidt, R. L.; Holman, K. M.; Simonovic, M.; Micura,
R. Chem Eur J. 2013, 19, 15872-15878.
(
(
(
d) Łyżwa, P.; Mikołajczyk, M. Heteroatom Chem 2011, 22, 594-598.
e) Prasad, V. P.; Wagner, S.; Keul, P.; Hermann, S.; Levkau, B.;
Schafers, M.; Haufe, G. Bioorg Med Chem. 2014, 22, 5168-5181.
Jackson, R. F. W.; Moore, R. J.; Dexter, C. S.; Elliott, J.; Mowbray, C.
E. J Org Chem. 1998, 63, 7875-7884.
9
1
.
0. (a) Bhat, R. G.; Porhiel, E.; Saravanan, V.; Chandrasekaran, S.
Tetrahedron Lett. 2003, 44, 5251-5253.
(
5
b) Howarth, N. M.; Wakelin, L. P. G. J Org Chem. 1997, 62, 5441-
450.
1
1
1. Fields, S. C., Tetrahedron. 1999, 55, 12237-12273.
2. (a) Chen, Y.-X.; Koch, S.; Uhlenbrock, K.; Weise, K.; Das, D.;
Gremer, L.; Brunsveld, L.; Wittinghofer, A.; Winter, R.; Triola, G.;
Waldmann, H. Angew. Chem. Int. Ed. 2010, 49, 6090-6095.
(
b) Chu, T.-T.; Gao, N.; Li, Q.-Q.; Chen, P.-G.; Yang, X.-F.; Chen, Y.-
X.; Zhao, Y.-F.; Li, Y.-M. Cell Chem Biol. 2016, 23, 453-461.
Figure 4. a) Fluorescence polarization measurements of Peptide-OP
5
, Peptide-CP 6 and Peptide-OH 12 respectively upon addition of
different concentration of 14-3-3 ζ. The fluorescence polarization
changes of Peptide-OP 5 and Peptide-CP 6 were fitted to Equation 1
(
D
SI) to yield K values. b) Fluorescence polarization measurements
of Peptide-OP 5 and Peptide-CP 6 upon addition of 14-3-3 ζ in the
presence or absence of alkaline phosphatases. The concentration of