Gerlach et al.
phases and apatites are being considered for the development
of fast oxide ion electrolytes with superior functional
properties for applications in IT-SOFCs.12-21 Among them,
the fluorite-type structured rare-earth (RE)-doped CeO2
materials have been investigated as a potential electrolyte
for IT-SOFCs.22-26 For example, Y-, Sm-, and Gd-doped
CeO2 show a bulk oxide ion conductivity of about 10-2 S/cm
above 500 °C, which is about 15 times higher than that of
YSZ at 500 °C and about 4 times higher than that above
750 °C.22 There are several synthesis methods, including
conventional ceramic (solid-state) and soft-chemical methods
such as glycine-nitrate,27 coprecipitation,28 and polymeriza-
tion,29 that are employed to prepare doped ceria electrolytes.
These preparation methods play a significant role in deter-
mining the microstructure and particle size distributions,
which influence the electrical conductivity,30-33 and particle-
size-dependent conductivity was explained using the space
charge model.34,35
type structure precursors, we have prepared novel meta-stable
In-doped CeO2 and Ca+Sm-doped CeO2 at 800 °C using
the new CO2 capture method.38 It is pertinent to mention
here that our attempt to prepare single-phase In-doped CeO2
using a ceramic (solid-state) method at elevated temperatures
was unsuccessful.26,38 Unlike BaCeO3,37a the Ba-containing
double perovskite-like Ba3Ca1+xNb2-xO
9-δ (BCN)37c and Ta-
doped BCN exhibit excellent chemical stability in 100% CO2
at 800 °C and in boiling water for a long period of time.39
With our own continuing interest in understanding the
thermodynamic stability of alkaline-earth-containing metal
oxides possessing three-dimensional perovksite and layered
(two-dimensional) perovskite-related structures in CO2, we
have investigated the chemical and structural stability of a
new layered-structure Y2O3-doped Sr2CeO4 (YSCO). Our
work clearly demonstrates the formation of fluorite-type
oxide-ion-conducting YCO from the layered perovskite-
related YSCO by reaction with CO2 at an elevated temper-
ature and subsequent acid-washing. The parent Sr2CeO4 is
a well-known blue-color-emitting phosphore, and its crystal
structure and thermodynamic stability have been character-
ized.40-43 Also, the present work shows a path for a new
precursor route synthesis of doped CeO2 materials by
designing appropriate precursor compounds that are reactive
in CO2 at elevated temperatures.
Recently, we have re-examined the chemical stability of
Y-doped BaCeO3 in CO2 at a temperature range of 600-1000
°C.36 Our investigation was found to be consistent with the
literature37 on the formation of BaCO3 and fluorite-type
Y2O3-doped CeO2 (YCO). During the course of our studies
toward a further understanding of the formation of fluorite-
type doped CeO2 oxide ion electrolytes from the perovskite-
Experimental Section
(12) Estell, T. H.; Flengas, S. N. Chem. ReV. 1970, 70, 339–376.
(13) Kendall, K. R.; Navas, C.; Thomas, J. K.; Zur Loye, H. C. Solid State
Ionics 1995, 82, 215–223.
Preparation and Characterization. Sr2Ce0.9Y0.1O3.95 and
Sr2Ce0.8Y0.2O3.9 were prepared by a conventional ceramic (solid-
state) method using stoichiometric amounts of CeO2 (>99.9% Alfa
Aesar), Y2O3 (>99.9% Alfa Aesar; dried at 800 °C in the air and
cooled to room temperature in a desiccator), and SrCO3 (99% Alfa
Aesar) at elevated temperatures in the air. The desired amount of
2-propanol was added to the starting materials in a zirconia bowl
and was ball-milled (Pulverisette, Fritsch, Germany) for about 2 h
at 150 rotations per minute using zirconia balls. The sample was
then taken out of the ball mill, dried in ambient air, and placed in
a clean alumina crucible and heated at 800 °C for 12 h. The resultant
product was then reground and sintered at 1350 °C for 24 h with
a heating and cooling rate of 10 °C per min. In the final stage of
heat treatment, the reaction products were pressed into pellets by
isostatic pressure. The sintered pellets were crushed into powder
for phase characterization employing a powder X-ray diffractometer
(PXRD; Bruker D8 powder X-ray diffractometer (Cu KR, 40 kV,
40 mA)).
(14) Kendall, R.; Navas, C.; Thomas, J. K.; Zur Loye, H. C. Chem. Mater.
1996, 8, 642–649.
(15) Inaba, H.; Tagawa, H. Solid State Ionics 1996, 83, 1–16.
(16) Shuk, P.; Wiemho¨fer, H.-D.; Guth, U.¨; Go¨pel, W.; Greenblatt, M.
Solid State Ionics 1996, 89, 179–196.
(17) Boivin, J. C.; Mairesse, G. Chem. Mater. 1998, 10, 2870–2888.
(18) Kharton, V. V.; Marques, F. M. B.; Atkinson, A. Solid State Ionics
2004, 174, 135–145.
(19) Wincewicz, K. C.; Cooper, J. S. J. Power Sources 2005, 140, 280–
296.
(20) Fergus, J. W. J. Power Sources 2006, 162, 30–40.
(21) Kendrick, E.; Islam, M. S.; Slater, P. R. J. Mater. Chem. 2007, 17,
3104–3111.
(22) Steele, B. C. H. Solid State Ionics 2000, 129, 95–110.
(23) Park, S.; Vohs, J. M.; Gorte, R. J. Nature 2000, 404, 265–266.
(24) Hibino, T.; Hashimoto, A.; Inoue, T.; Tokuno, J. I.; Yoshida, S. I.;
Sano, M. Science 2000, 288, 2031–2033.
(25) Brandon, N. P.; Blake, A.; Corcoran, D.; Cumming, D.; Duckett, A.;
El-Koury, K.; Haigh, D.; Kidd, C.; Leah, R.; Lewis, G.; Matthews,
C.; Maynard, N.; Oishi, N.; McColm, T.; Trezona, R.; Selcuk, A.;
Schmidt, M.; Verdugo, L. J. Fuel Cell Sci. Technol. 2004, 1, 61–65.
(26) Pearce, M. C.; Thangadurai, V. Asia-Pacific J. Chem. Eng. 2008, in
press.
(27) Xia, C.; Liu, M. Solid State Ionics 2002, 152-153, 423–430.
(28) Ding, D.; Liu, B.; Zhu, Z.; Zhou, S.; Xia, C. Solid State Ionics 2008,
179, 896–899.
(29) (a) Biswas, M.; Prabhakaran, K.; Gokhale, N. M.; Sharma, S. C. Mater.
Res. Bull. 2007, 42, 609–617. (b) Lu, C.; Worrell, W. L.; Gorte, R. J.;
Vohsb, J. M. J. J. Electrochem. Soc. 2003, 150, A354–A358.
(30) Kosacki, I.; Suzuki, T.; Petrovsky, V.; Anderson, H. U. Solid State
Ionics 2000, 136-137, 1225–1233.
(31) Tschope, A.; Sommer, E.; Birringer, R. Solid State Ionics 2001, 139,
255–265.
(32) Suzuki, T.; Kosacki, I.; Anderson, H. U. Solid State Ionics 2002, 151,
111–121.
(37) (a) Gopalan, S.; Virkar, A. V. J. Electochem. Soc. 1993, 140, 1060–
1065. (b) Tanner, C. W.; Virkar, A. V. J. Electrochem. Soc. 1996,
143, 1386–1389. (c) Bhide, S. V.; Virkar, A. V. J. Electrochem. Soc.
1999, 146, 4386–4392. (d) Ryu, K. H.; Haile, S. M. Solid State Ionics
1999, 125, 355–367. (e) Azad, A. K.; Irvine, J. T. S. Solid State Ionics
2007, 178, 635–64. (f) Zakowsky, N.; Williamson, S.; Irvine, J. T. S.
Solid State Ionics 2005, 176, 3019–3026. (g) Matsumoto, H.; Ka-
wasaki, Y.; Ito, N.; Enoki, M.; Ishihara, T. Electrochem. Solid-State
Lett. 2007, 10, B77-B80.
(38) Trobec, F.; Thangadurai, V. Inorg. Chem. 2008, 47, 8972–8984.
(39) Bhella, S. S.; Thangadurai, V. J. Power Sources 2008, DOI: 10.1016/
j.jpowsour.2008.09.110.
(33) Surble, S.; Baldinozzi, G.; Dolle, M.; Gosset, D.; Petot, C.; Petot-
Ervas, G. Ionics 2008, 14, 33–36.
(34) Tschope, A. Solid State Ionics 2001, 139, 267–280.
(35) Tschope, A.; Kilassonia, S.; Briringer, R. Solid State Ionics 2004, 173,
57–61.
(36) Sneha, S. B.; Thangadurai, V. J. Solid State Chem. 2007, 180, 2661–
266.
(40) Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.;
Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.;
Weinberg, W. H.; Wu, X. D. J. Mol. Struct. 1998, 470, 229–235.
(41) Hirai, T.; Kawamura, Y. J. Phys. Chem. B 2004, 108, 12763–12769.
(42) Shirsat, A. N.; Kaimal, K. N. G.; Bharadwaj, S. R.; Das, D. Therm.
Chim. Acta 2006, 447, 101–105.
(43) Lu, C. H.; Chen, C. T. J. Sol-Gel. Sci. Technol. 2007, 43, 179–185.
258 Inorganic Chemistry, Vol. 48, No. 1, 2009