5234 Zheng et al.
Macromolecules, Vol. 35, No. 13, 2002
Serres, A.; Hatchell, D. L.; Grinstaff, M. W. J . Macromol.
Sci.sPure Appl. Chem. 1999, A36, 981. (c) Giammona, G.;
Pitarresi, G.; Cavallaro, G.; Buscemi, S.; Saiano, F. Biochim.
Biophys. Acta 1999, 1428, 29. (d) Andreopoulos, F. M.;
Christopher, R. D.; Stauffer, M. T.; Weber, S. G.; Wagner,
W. R.; Beckman, E. J .; Russell, A. J . J . Am. Chem. Soc. 1996,
118, 6235.
(2) Zhang, Y.; Won, C.; Chu, C. J . Polym. Sci., Part A: Polym.
Chem. 2000, 38, 2392.
(3) (a) Subramanian, K.; Krishnasamy, V.; Nanjundan, S.; Reddy,
A. V. R. Eur. Polym. J . 2000, 36, 2343. (b) Kim, S. H.; Won,
C. Y.; Chu, C. C. Carbohyd. Polym. 1999, 40, 183. (c) Kato,
M.; Ohara, H.; Fukuda, T.; Matsuda, H.; Nakanishi, H.
Macromol. Chem. Phys. 1998, 199, 881. (d) ACS Symposium
Series 673; Scranton, A. B., Bowman, C. N., Peiffer, R. W.,
Eds.; American Chemical Society: Washington, DC, 1997.
(4) (a) Laschewsky, A.; Rekai, E. Macromol. Rapid Commun.
2000, 21, 937. (b) Ali, A. H.; Srinivasan, K. S. V. J . Appl.
Polym. Sci. 1998, 67, 441. (c) Huang, J .; Zhu, D.; Lu, G.;
Wang, Z. Acta Chim. Sin. 1995, 53, 1018. (d) Hashidate, S.;
Nagasaki, Y.; Kato, M.; Matsuda, H.; Nakanishi, H. Polym.
Adv. Technol. 1995, 6, 626. (e) Nakayama, Y.; Matsuda, T.
J . Polym. Sci. A.; Polym. Chem. 1993, 31, 977.
(5) (a) Chen, Y.; Chen, K.-H. J . Polym. Sci., Part A: Polym.
Chem. 1997, 35, 613. (b) Chen, Y.; Chou, C.-F. J . Polym. Sci.,
Part A: Polym. Chem. 1995, 33, 2705. (c) Chen, Y.; Wu, J .-
D. J . Polym. Sci., Part A: Polym. Chem. 1994, 32, 1867. (d)
Chujo, Y.; Sada, K.; Saeguss, T. Macromolecules 1990, 23,
2693.
F igu r e 7. Number of reversible cycles of PEG-AN hydrogel
monitored by UV-vis spectroscopy at 366 nm. An aqueous
solution of PEG-AN (10% w/v) was exposed to alternating
wavelengths of irradiation (365 nm for 10 min; 254 nm for 5
min.
(6) (a) Kuckling, D.; Adler, H. J .; Arndt, K. F.; Wolff, T.;
Hoffmann, J .; Fischer, W. J . Macromol. Symp. 1999, 142, 111.
(b) Schinner, R.; Wolff, T.; Kuckling, D. Ber. Bunsen-Ges.
Phys. Chem. Chem. Phys. 1998, 102, 1710. (c) Matsuda, T.;
Moghddam, M. J . Trans. Am. Soc. Artif. Intern. Organs 1991,
37, M437. (d) Ichimura, K. J . Polym. Sci., Part A: Polym.
Chem. 1984, 22, 2817.
(7) (a) Imai, Y.; Ogoshi, T.; Naka, K.; Chujo, Y. Polym. Bull.
(Berlin) 2000, 45, 9. (b) Inaki, Y. J . Synth. Org. Chem. J pn.
1993, 51, 188.
(8) (a) Lippert, T.; Wei, J .; Wokaun, A.; Hoogen, N.; Nuyken, O.
Macromol. Mater. Eng. 2000, 283, 2000. (b) Hoogen, N.;
Nuyken, O. J . Polym. Sci., Part A: Polym. Chem. 2000, 38,
1903.
(9) Andreopoulos, F. M.; Beckman, E. J .; Russell, A. J . Bioma-
terials 1998, 19, 1343.
Interestingly, studies by Coursan and Desvergne14d
demonstrated that anthracene-modified polystyrene
polymers underwent reversible transformations with
minimum loss in photoreversibility efficiency. On their
study, ω-hydroxy-telechelic polystyrene was derivatized
with an anthracene moiety lacking a carbonyl function-
ality, namely 9-chloromethylanthracene. It was sug-
gested that the presence of the carbonyl functionality
may interfere with the photoreversible process. In
subsequent experiments, we also synthesized highly
modified PEG with anthracene groups through an ether
linkage. However, the photoreversible efficiency did not
change in comparison to the PEG-AN macromers.
From a practical standpoint, the partial reversibility is
still a valuable attribute; i.e., light can be used as a
trigger to alter the physicochemical properties in a
continuous and reversible manner, while not changing
the gel nature of the system.
(10) Andreopoulos, F. M.; Beckman, E. J .; Russell, A. J . J . Polym.
Sci., Part A: Polym. Chem. 2000, 38, 1466.
(11) Zheng, Y.; Andreopoulos, F. M.; Micic, M.; Huo, Q.; Pham, S.
M.; Leblanc, R. M. Adv. Funct. Mater. 2001, 11, 37.
(12) See two reviews and references therein: (a) Bouas-Laurent,
H.; Castellan, A.; Desvergne, J .-P.; Lapouyade, R. Chem. Soc.
Rev. 2000, 29, 43. (b) Bouas-Laurent, H.; Desvergne, J .-P.
In Photochromism Molecules and Systems; Du¨rr, H., Bouas-
Laurent, H., Eds.; Elsevier, New York, 1990; Chapter 14, p
561.
Con clu sion
(13) See two recent examples: (a) Cao, D.; Meier, H. Angew.
Chem., Int. Ed. 2001, 40, 186. (b) Mcskimming, G.; Tucker,
J . H. R.; Bouas-Laurent, H.; Desvergne, J .-P. Angew. Chem.,
Int. Ed. 2000, 39, 2167.
(14) For typical examples, see: (a) Ishii, T.; Tezuka, Y.; Kawamoto,
S.; Uno, T. J . Photochem. Photobiol. AsChem. 1994, 83, 55.
(b) Torii, T.; Ushiki, H.; Horie, K. Polym. J . 1993, 25, 173.
(c) Torii, T.; Ushiki, H.; Horie, K. Polym. J . 1992, 24, 1057.
(d) Coursan, M.; Desvergne, J . P. Macromol. Chem. Phys.
1996, 197, 1599.
(15) Chujo, Y.; Sada, K.; Nomura, R.; Naka, A.; Saegusa, T.
Macromolecules 1993, 26, 5611.
(16) Bayliss, M. A.; Homer, R. G.; Shepherd, M. J . Chem. Com-
mun. 1990, 305.
(17) Tazuke, S.; Banba, F. J . Polym. Sci., Part A: Polym. Chem.
1976, 14, 2463.
(18) Nakayama, Y.; Matsuda, T. J . Polym. Sci., Part A: Polym.
Chem. 1992, 30, 2451.
(19) (a) Sui, G.; Micic, M.; Huo, Q.; Leblanc, R. M. Colloids Surf.
A 2000, 171, 15. (b) Sui, G.; Micic, M.; Huo, Q.; Leblanc, R.
M. Langmuir 2000, 16, 7847. (c) Micic, M.; J eremic, M.;
Radotic, K.; Mavers, M.; Leblanc, R. M. Scanning 2000, 22,
288. (d) Micic, M.; J eremic, M.; Radotic, K.; Leblanc, R. M.
J . Colloid Interface Sci. 2000, 231, 190. (e) Micic, M.; Chen,
A.; Leblanc, R. M.; Moy, V. T. Scanning 1999, 21, 394.
In this study, we have synthesized a highly modified
PEG-AN macromer, which undergoes rapid photogel-
ation in the absence of initiators or catalysts and
demonstrates a photoreversible behavior. Physicochem-
ical properties such as swellability, UV-vis absorption,
and topography were all controlled by alternating the
irradiation wavelength (365 and 254 nm). The reversible
behavior of the PEG-AN gel provides a unique method
of fine-tuning the gel’s properties in a stimuli-responsive
manner. We envision potential applications of such
photoresponsive gels in photorecording as light switch
materials and in biomedical engineering as controlled
delivery vehicles.
Ack n ow led gm en t. This research is supported by
the National Science Foundation (CHE-0091390), U.S.
Army Research Office (DAAD19-00-1-0138), and the
Stanley Glaser Foundation.
Refer en ces a n d Notes
(1) (a) J o, S.; Shin, H.; Shung, A. K.; Fisher, J . P.; Mikos, A. G.
MA012263Z
Macromolecules 2001, 34, 2839. (b) Smeds, K. A.; Pfister-