Biochemistry
Communication
(4) Clouthier, C. M., and Pelletier, J. N. (2012) Expanding the
organic toolbox: a guide to integrating biocatalysis in synthesis. Chem.
Soc. Rev. 41, 1585−1605.
productive binding and increased rate of coenzyme release in an
alcohol dehydrogenase increases turnover with a nonpreferred alcohol
enantiomer. FEBS J. 284, 3895−3914.
(24) Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G.,
(5) Bhowmick, K. C., and Joshi, N. N. (2006) Syntheses and
applications of C2-symmetric chiral diols. Tetrahedron: Asymmetry 17,
1901−1929.
̈
̈
Ohlsson, I., Boiwe, T., and Branden
́
, C.-I. (1974) The structure of
̈
horse liver alcohol dehydrogenase. FEBS Lett. 44, 200−204.
(25) Kvassman, J., and Pettersson, G. (1980) Unified mechanism for
proton-transfer reactions affecting the catalytic activity of liver alcohol
dehydrogenase. Eur. J. Biochem. 103, 565−575.
́
(6) Hoyos, P., Sinisterra, J. V., Molinari, F., Alcantara, A. R., and
Domínguez de María, P. (2010) Biocatalytic strategies for the
asymmetric synthesis of α-hydroxy ketones. Acc. Chem. Res. 43,
288−299.
(26) LeBrun, L. A., and Plapp, B. V. (1999) Control of coenzyme
binding to horse liver alcohol dehydrogenase. Biochemistry 38, 12387−
12393.
(7) Palomo, C., Oiarbide, M., and García, J. M. (2012) α-Hydroxy
ketones as useful templates in asymmetric reactions. Chem. Soc. Rev.
41, 4150−4164.
(27) Plapp, B. V. (2010) Conformational changes and catalysis by
alcohol dehydrogenase. Arch. Biochem. Biophys. 493, 3−12.
(28) Eisenthal, R., Danson, M. J., and Hough, D. W. (2007) Catalytic
efficiency and kcat/KM: a useful comparator? Trends Biotechnol. 25,
247−249.
(8) Zhang, J., Xu, T., and Li, Z. (2013) Enantioselective biooxidation
of racemic trans-cyclic vicinal diols: one-pot synthesis of both
enantiopure (S,S)-cyclic vicinal diols and (R)-α-hydroxy ketones.
Adv. Synth. Catal. 355, 3147−3153.
(9) Agudo, R., Roiban, G.-D., Lonsdale, R., Ilie, A., and Reetz, M. T.
(2015) Biocatalytic route to chiral acyloins: P450-catalyzed regio- and
enantioselective α-hydroxylation of ketones. J. Org. Chem. 80, 950−
956.
(10) Zhang, J., Wu, S., Wu, J., and Li, Z. (2015) Enantioselective
cascade biocatalysis via epoxide hydrolysis and alcohol oxidation: one-
pot synthesis of (R)-α-hydroxy ketones from meso- or racemic
epoxides. ACS Catal. 5, 51−58.
(11) Stampfer, W., Kosjek, B., Moitzi, C., Kroutil, W., and Faber, K.
(2002) Biocatalytic asymmetric hydrogen transfer. Angew. Chem., Int.
Ed. 41, 1014−1017.
(12) Stampfer, W., Kosjek, B., Faber, K., and Kroutil, W. (2003)
Biocatalytic asymmetric hydrogen transfer employing Rhodococcus
ruber DSM 44541. J. Org. Chem. 68, 402−406.
(29) The PyMOL Molecular Graphics System, version 1.8,
Schrodinger, LLC, Portland, OR.
̈
(30) Karabec, M., Łyskowski, A., Tauber, K. C., Steinkellner, G.,
Kroutil, W., Grogan, G., and Gruber, K. (2010) Structural insights into
substrate specificity and solvent tolerance in alcohol dehydrogenase
ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem. Commun. 46,
6314−6316.
(13) Kosjek, B., Stampfer, Pogorevc, W. M., Goessler, W., Faber, K.,
and Kroutil, W. (2004) Purification and characterization of a
chemotolerant alcohol dehydrogenase applicable to coupled redox
reactions. Biotechnol. Bioeng. 86, 55−62.
(14) Hamnevik, E., Blikstad, C., Norrehed, S., and Widersten, M.
(2014) Kinetic characterization of Rhodococcus ruber DSM 44541
alcohol dehydrogenase A. J. Mol. Catal. B: Enzym. 99, 68−78.
(15) Fersht, A. (1999) in Structure and Mechanism in Protein Science,
pp 114−116, W. H. Freeman, New York.
(16) Bar-Even, A., Milo, Noor, R. E., and Tawfik, D. S. (2015) The
moderately efficient enzyme: futile encounters and enzyme floppiness.
Biochemistry 54, 4969−4977.
(17) Reetz, M. T., Bocola, M., Carballeira, J. D., Zha, D., and Vogel,
A. (2005) Expanding the range of substrate acceptance of enzymes:
combinatorial active-site saturation test. Angew. Chem., Int. Ed. 44,
4192−4196.
(18) Reetz, M. T., and Carballeira, J. D. (2007) Iterative saturation
mutagenesis (ISM) for rapid directed evolution of functional enzymes.
Nat. Protoc. 2, 891−903.
(19) Reetz, M. T., Kahakeaw, D., and Sanchis, J. (2009) Shedding
light on the efficacy of laboratory evolution based on iterative
saturation. Mol. BioSyst. 5, 115−122.
(20) Monterde, M. I., Lombard, M., Archelas, A., Cronin, A., Arand,
M., and Furstoss, R. (2004) Enzymatic transformations. Part 58:
enantioconvergent biohydrolysis of styrene oxide derivatives catalysed
by the Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry
15, 2801−2805.
(21) Cao, L., Lee, J., Chen, W., and Wood, T. K. (2006)
Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from
styrene oxide by combining the Solanum tuberosum and an evolved
Agrobacterium radiobacter AD1 epoxide hydrolases. Biotechnol. Bioeng.
94, 522−529.
(22) Carlsson, Å. J., Bauer, P., Ma, H., and Widersten, M. (2012)
Obtaining optical purity for product diols in enzyme-catalyzed epoxide
hydrolysis: contributions from changes in both enantio- and
regioselectivity. Biochemistry 51, 7627−7637.
(23) Hamnevik, E., Enugala, T. R., Maurer, D., Ntuku, S., Oliveira, A.,
Dobritzsch, D., and Widersten, M. (2017) Relaxation of non-
D
Biochemistry XXXX, XXX, XXX−XXX