values later refined by Gavezzotti.25 The method assigns van
der Waals volume to different molecular components (methyls,
methylenes, aromatic methines, carbonyls, hydroxyls, halides, etc.),
which are added together to approximate the total volume of the
Notes and references
1 Photochemistry in organized & Constrained Media, ed. V. Ramamurthy,
VCH, New York, 1991.
2 (a) N. J. Turro and M. A. Garcia-Garibay, in Photochemistry in
Organized and Constrained Media, ed. V. Ramamurthy, VCH, New
York, 1992; (b) R. G. Weiss, V. Ramamurthy and G. S. Hammond, Acc.
Chem. Res., 1993, 26, 530; (c) G. A. Hembury, V. V. Borovkov and Y.
Inoue, Chem. Rev., 2008, 108, 1.
3 (a) G. M. J. Schmidt, Solid State Photochemistry, ed. D. Ginsburg,
Verlag Chemie, New York, 1976; (b) M. D. Cohen, Angew. Chem., Int.
Ed. Engl., 1975, 14, 386; (c) A. E. Keating and M. A. Garcia-Garibay,
in Molecular and Supramolecular Photochemistry, ed. V. Ramamurthy
and K. Schanze, Marcel Dekker, New York, 1998; (d) M. A. Garcia-
Garibay, Acc. Chem. Res., 2003, 36, 491.
4 (a) F. Gessner, A. Olea, J. H. Lobaugh, L. J. Johnston and J. C. Scaiano,
J. Org. Chem., 1989, 54, 259; (b) V. Ramamurthy, D. R. Corbin and
L. J. Johnston, J. Am. Chem. Soc., 1992, 114, 3870; (c) M. Sykora, J. R.
Kincaid, P. K. Dutta and N. B. Castagnola, J. Phys. Chem. B, 1999,
103(2), 309; (d) J. A. Incavo and P. K. Dutta, J. Phys. Chem., 1990,
94(7), 3075.
5 (a) K. B. Yoon and J. K. Kochi, J. Am. Chem. Soc., 1989, 111(3), 1128–
1130; (b) K. B. Yoon, T. J. Huh, D. R. Corbin and J. K. Kochi, J. Phys.
Chem., 1993, 97, 6492–6499.
3
3
molecule.24,25 Values (VM) of 177 A and 120 A are obtained
˚
˚
for benzophenone and acetophenone, respectively, and a value of
3
˚
101 A for cyclohexane. The average free volume of the supercages
3
of NaY is reported26 to be VSC = 839 A . To estimate the number
˚
of molecules that may be accommodated within a supercage,
we assume the known packing coefficient of benzene in NaY
as an upper limit. The packing coefficient, CK, was defined by
Kitaigorodskii27 as the ratio between the filled volume, based
on the van der Waals molecular volume, and the total available
volume. In the case of benzene, it has been determined that, on
average, there are 5.4 benzene molecules per supercage.22 With
3
˚
a van der Waals volume of 85.4 A per benzene molecule, the
packing coefficient of benzene becomes CK = (5 ¥ 85.4)/839 =
0.55. Assuming the same packing coefficient for the reactants in
our study, one may expect that supercage occupancies will occur
6 N. J. Turro and Z. Zhang, in Photochemistry on Solid Surfaces, ed.
M. Anpo and T. Matsuura, Elsevier, Amsterdam, 1989.
7 J. C. Scaiano, M. Kaila and S. Corrent, J. Phys. Chem. B, 1997, 101,
8564.
8 (a) A. Joy and V. Ramamurthy, Chem.–Eur. J., 2000, 6, 1287; (b) J.
Sivaguru, A. Natarajan, L. S. Kaanumalle, J. Shailaja, S. Uppili, A. Joy
and V. Ramamurthy, Acc. Chem. Res., 2003, 36, 509.
9 (a) J. Schaefer and E. O. Stejskal, Top. Carb.-13 NMR Spec., 1979, 3,
283; (b) J. F. Parmer, L. C. Dickinson, C. W. Chien and R. S. Porter,
Macromolecules, 1987, 20, 2308; (c) G. C. Gobbi, R. Silvestri, T. P.
Russel, J. R. Lyerla, W. W. Fleming and T. Nishi, J. Polym. Sci. Part C:
Polym. Lett., 1987, 25, 61.
with a number of molecules that have a total added volume VTOT
ª
3
˚
VSC * CK = 462 A . While this volume is surpassed slightly with
one benzophenone and three cyclohexane molecules for a VTOT
=
3
˚
478 A , an analogous occupancy in the case of acetophenone
3
˚
would occur with a VTOT = 421.4 A , which could help explain the
significantly higher molecular and radical pair rotational fluidities.
Conclusions
10 D. Cizmeciyan, L. B. Sonnichsen and M. A. Garcia-Garibay, J. Am.
Chem. Soc., 1997, 119, 184.
11 M. A. Garcia-Garibay, Curr. Op. Sol. St. Mat. Sc., 1998, 3/4, 399.
12 P. I. Dosa and G. C. Fu, J. Am. Chem. Soc., 1998, 120, 445–446.
13 National Institute of Advanced Industrial Science and Technology,
SDBS NO. 11527. http://riodb01.ibase.aist.go.jp/sdbs/ (accessed Aug
26, 2008).
14 G. Cahiez, D. Luart and F. Lecomte, Org. Lett., 2004, 6, 4395.
15 National Institute of Advanced Industrial Science and Technology,
SDBS NO. 21853. http://riodb01.ibase.aist.go.jp/sdbs/ (accessed Aug
26, 2008).
Photochemical reactions in zeolites take place under conditions
where the time scales for molecular and intermolecular degrees
of freedom are strongly reorganized as compared to solution
and most other reaction media. While slow diffusion allows
for reactants and product to enter and exit the zeolite interior,
bimolecular reactions take advantage of relatively long-lived
cage effects. While reactions derived from random encounters
of free radicals are efficiently prevented, the options available to
the geminate radical pair depend on how the latter fits within
the rigid environment of the zeolite supercages. Intermolecular
cross polarization experiments indicate that acetophenone and
cyclohexane have a significantly enhanced rotational freedom
as compared with that of benzophenone and cyclohexane. The
greater rotational fluidity allows the radical pair derived from the
former reactant couple to explore reaction pathways that are not
available to the latter.
16 W. T. Dixon, J. Shaefer, M. D. Sefcik and R. A. McKay, J. Mag. Res.,
1982, 49, 341.
17 (a) P. J. Wagner and B.-S. Park, Org. Photochem., 1991, 11, 227; (b) J. C.
Scaiano, J. Photochem., 1973/74, 2, 81.
18 An analogous observation was reported in: B. W. Babcock, D. R.
Dimmel, J. Graves and P. David, J. Org. Chem., 1981, 46, 736.
19 X. Lei and N. J. Turro, J. Photochem. Photobiol. A, 1992, 69, 53.
20 M. A. Garcia-Garibay, X. Lei and N. J. Turro, J. Am. Chem. Soc., 1992,
114, 2749.
21 H. G. Benson and A. Hudson, Mol. Phys., 1970, 185.
22 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve´, B. Alonso, J. O.
Durand, B. Bujoli, Z. Gan and G. Hoatson, Mag. Res. Chem., 2002,
40, 70.
23 S. R. Hartmann and E. L. Hahn, Phys. Rev., 1962, 128, 2042.
24 A. J. Bondi, Phys. Chem., 1964, 68, 441.
25 A. Gavezzotti, J. Am. Chem. Soc., 1990, 105, 5220.
26 V. Ramamurthy, D. R. Corbin and D. F. Eaton, J. Org. Chem., 1990,
55, 5269.
Acknowledgements
This research was supported by NIH grant MARC U*STAR
2T34GM008415-16, Mount St. Mary’s College Professional De-
velopment Grant #1311-11, and NSF grant CHE0551938. We
thank Drs R. Taylor and J. Strouse from UCLA for help and
advice.
27 A. I. Kitaigorodskii, Molecular Crystals and Molecules, Academic
Press, New York, 1973.
2326 | Org. Biomol. Chem., 2009, 7, 2322–2326
This journal is
The Royal Society of Chemistry 2009
©