5990
S. P. Maddaford et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5987–5990
7. Moazed, D.; Noller, H. F. Nature 1987, 327, 389.
8. Fourmy, D.; Recht, M. I.; Blanchard, S. C.; Puglisi, J. D.
Science 1996, 274, 1367.
9. Vicens, Q.; Westhof, E. Structure 2001, 9, 647.
10. Fourmy, D.; Recht, M. I.; Puglisi, J. D. J. Mol. Biol. 1998,
277, 347.
11. Vicens, Q.; Westhof, E. J. Mol. Biol. 2003, 326, 1175.
12. Lynch, S. R.; Gonzalez, R. L., Jr.; Puglisi, J. D. Structure
2003, 11, 43.
13. Vicens, Q.; Westhof, E. Chem. Biol. 2002, 9, 747.
14. Carter, A. P.; Clemons, W. M.; Brodersen, D. E.;
Morgan-Warren, R. J.; Wimberly, B. T.; Ramakrishnan,
V. Nature 2000, 407, 340.
15. Yu, L.; Oost, T. K.; Schkeryantz, J. M.; Yang, J.;
Janowick, D.; Fesik, S. W. J. Am. Chem. Soc. 2003, 125,
4444.
16. Mayer, M.; James, T. L. J. Am. Chem. Soc. 2004, 126,
4453.
17. Russell, R. J. M.; Murray, J. B.; Lentzen, G.; Haddad, J.;
Mobashery, S. J. Am. Chem. Soc. 2003, 125, 3410.
18. Shearer, B. G.; Oplinger, J. A.; Lee, S. Tetrahedron Lett.
1997, 38, 179.
19. Milligan, J. F.; Groebe, D. R.; Witherell, G. W.; Uhlen-
beck, O. C. Nucleic Acids Res. 1987, 15, 8783.
20. Recht, M. I.; Fourmy, D.; Blanchard, S. C.; Dahlquist, K.
D.; Puglisi, J. D. J. Mol. Biol. 1996, 262, 421.
21. Hofstadler, S. A.; Sannes-Lowery, K. A.; Crooke, S. T.;
Ecker, D. J.; Sasmor, H.; Manalili, S.; Griffey, R. H. Anal.
Chem. 1999, 71, 3436.
This modelingdemonstrates that MCR13 adopts a bent
shape about the seven-member central ringand has the
correct geometry to fit into the major groove pocket
formed by the A-site nucleotides. MCR13 is approxi-
mately the same size as two of the carbohydrate rings
of the aminoglycoside compounds. Amongst the lowest
energy docked structures there is a variation in the posi-
tion of MCR13 in the A-site. However, the ligand tends
to bind at the same sites as occupied by rings 2 and 3 or
rings 3 and 4 of paromomycin in the experimentally
determined complexes. In the lowest energy docked
structure we observe electrostatic interactions between
the U1406 phosphate and the pyrrolidine group on
MCR13 and between the C1407 and G1489 phosphate
groups and the imino functionality on MCR13. Addi-
tionally, the B-aromatic ringof MCR13 ( Scheme 1)
stacks against the aromatic base of U1490. These inter-
actions are consistent with MCR13 occupyingthe same
general site as rings 2 and 3 or 3 and 4 of paromomycin.
These rings on paromomycin interact with G1405,
U1406, C1407, G1491, G1494, U1495, in the crystal
structure of the complex.
In summary, we report the discovery of a novel non-car-
bohydrate molecule that binds to the E. coli ribosomal
A-site. Bindingwas demonstrated usingNMR spectro-
scopy and ESI-FTMS methods and we showed that
MCR13 binds at the same site as the aminoglycoside
family of antibiotics. Future work will focus on improv-
ingthe affinity of MCR13 to the A-site RNA through a
structure–activity relationship (SAR) study.
22. Sannes-Lowery, K. A.; Griffey, R. H.; Hofstadler, S. A.
Anal. Biochem. 2000, 280, 264.
23. Griffey, R. H.; Sannes-Lowery, K. A.; Drader, J. J.;
Mohan, V.; Swayze, E. E.; Hofstadler, S. A. J. Am. Chem.
Soc. 2000, 122, 9933.
24. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.;
Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem.
1998, 19, 1639.
Acknowledgements
25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;
Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain,
M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.
M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A., Gaussian, Pittsburgh, PA, 2003.
This work was supported by fundingfrom the Natural
Sciences and Engineering Research Council of Canada
(NSERC) to P.E.J. and R.R.H., and from the National
Institutes of Health (R01-GM643208) to K.B.T. and D.F.
References and notes
1. Kotra, L. P.; Haddad, J.; Mobashery, S. Antimicrob.
Agents Chemother. 2000, 44, 3249.
2. Schacht, J. Ann. N.Y. Acad. Sci. 1999, 884, 125.
3. Humes, H. D. Ann. N.Y. Acad. Sci. 1999, 884, 15.
4. Ningeot-Leclercq, M.; Tulkens, P. M. Antimicrob. Agents
Chemother. 1999, 43, 1003.
5. Vakulenko, S. B.; Mobashery, S. Clin. Microbiol. Rev.
2003, 16, 430.
6. Alper, P. B.; Hendrix, M.; Sears, P.; Wong, C.-H. J. Am.
Chem. Soc. 1998, 120, 1965.