ACCEPTED MANUSCRIPT
percent efficiency in an organic dye-sensitized solar cell, Chem. Commun. 50 (2014) 6379–6381.
S. Mathew, A.Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, M. Grätzel, Dye-sensitized
solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem.
4
5
.
.
K. Kakiage, Y. Aoyama, T.Yano, T. Otsuka, T. Kyomen, M. Unno & M. Hanaya, An achievement of over 12
6
(2014) 242.
6
7
8
.
.
.
.
A.Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, M. Grätzel, Porphyrin-sensitized
solar cells with cobalt (II/III)--based redox electrolyte exceed 12 percent efficiency. Science. 334 (2011) 629–
6
34.
L. Zani, J. Dagar, S. Lai, S. Centi, F. Ratto, R. Pini, M. Mazzoni, Studies on the efficiency enhancement of co-
sensitized, transparent DSSCs by employment of core-shell-shell gold nanorods. Inorg. Chim. Acta. 470 (2018)
4
07–415.
R. Bisht, A. K. Singh & J. Nithyanandhan, Panchromatic sensitizer for dye-sensitized solar cells: unsymmetrical
squaraine dyes incorporating benzodithiophene π-spacer with alkyl chains to extend conjugation, control the dye
assembly on TiO , and retard charge recombination. J. Org. Chem. 82 (2017) 1920–1930.
2
9
1
J. O. Escobedo, O. Rusin, S. Lim & R. M. Strongin, NIR dyes for bioimaging applications. Curr. Opin. Chem.
Biol. 14 (2010) 64–70.
0. G. M. Shivashimpi, S. S. Pandey, R. Watanabe, N. Fujikawa, Y. Ogomi, Y.Yamaguchi & S. Hayase, Novel
unsymmetrical squaraine dye bearing cyanoacrylic acid anchoring group and its photosensitization behavior.
Tetrahedron Lett. 53 (2012) 5437–5440.
1
1. J.-H.Yum, S. Jang, R. Humphry-Baker, M. Grätzel, J.-J. Cid, T. Torres & M. K. Nazeeruddin, Effect of
coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir. 24 (2008)
5
636–5640.
1
1
1
2. L. Beverina & P. Salice, Squaraine compounds: Tailored design and synthesis towards a variety of material
science applications. Eur. J. Org. Chem. 2010 (2010) 1207–1225.
3. A. Misra, P. Kumar, R. Srivastava, S. K. Dhawan, M. N. Kamalasanan & S. Chandra, Electrochemical and
optical studies of conjugated polymers for three primary colours. Indian J. Pure Appl. Phys. 44 (2005) 921–925.
4. D. Bagnis, L. Beverina, H. Huang, F. Silvestri, Y. Yao, H. Yan, A. Facchetti, Marked alkyl-vs alkenyl-
substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell
efficiency. J. Am. Chem. Soc. 132 (2010) 4074–4075.
1
1
1
1
1
5. A. Irfan, R. Cui & J. Zhang, Fluorinated derivatives of mer-Alq3: energy decomposition analysis, optical
properties, and charge transfer study. Theor. Chem. Acc. 122 (2009) 275–281.
6. F. Silvestri, M. D. Irwin, L. Beverina, A. Facchetti, G. A. Pagani & T. J. Marks, Efficient squaraine-based
solution processable bulk-heterojunction solar cells. J. Am. Chem. Soc. 130 (2008) 17640–17641.
7. L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen & M. L. Steigerwald, Dependence of single-
molecule junction conductance on molecular conformation. Nature. 442 (2006) 904–907.
8. Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu & J. T. Lin, Recent developments in molecule-based organic
materials for dye-sensitized solar cells. J. Mater. Chem. 22 (2012) 8734–8747.
9. A. M. Asiri, S. A. H. Al-Horaibi, A. Irfan, S. A. Basaif & R. M. El-Shishtawy, Cis/Trans Geometric Effect on the
Electro-Optical Properties and Electron Injection in Indole-Based Squaraine Sensitizers: Quantum Chemical
Investigations. Int. J. Electrochem. Sci. 10 (2015) 1529–1542.
2
0. V. Punitharasu, M. F. Mele Kavungathodi & J. Nithyanandhan, Self-Assembly of Cis-Configured Squaraine Dyes
at the TiO --Dye Interface: Far-Red Active Dyes for Dye-Sensitized Solar Cells. ACS Applied Materials &
2
Interfaces. 10 (2018) 16541–16551.
2
2
1. Z. Yan, S. Guang, X. Su & H. Xu, Near-infrared absorbing squaraine dyes for solar cells: relationship between
architecture and performance. J. Phys. Chem. C. 116 (2012) 8894–8900.
2. S. A. Al-horaibi, S. T. Gaikwad & A. S. Rajbhoj, Synthesis, characterizations, and comparative study of electro-
optical properties of indole-based squaraine sensitizers as efficiency to enhancing dye-sensitized solar cells. Adv.
Mater. Lett. 9(2018) 275-283.
2
2
3. T. Maeda, T. V. Nguyen, Y. Kuwano, X. Chen, K. Miyanaga, H. Nakazumi, A. Ajayaghosh, Intramolecular
Exciton-Coupled Squaraine Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C. 122 (2018) 21745–21754.
4. S. A. Al-horaibi, M. T. Alghamdi, S. T. Gaikwad, A. S. Rajbhoj, Comparison and Determine Characteristics
Potentials of HOMO/LUMO and Relationship between Ea and Ip for Squaraine Dyes (SQ1, SQ2) by Using
Cyclic Voltammetry and DFT/TD-DFT. Moroccan J Chem. 6 (2018) 404-413.
2
5. A. M. Asiri, S. A. H. Al-Horaibi, A. Irfan, S. A. Basaif & R. M. El-Shishtawy, Comparative study of the
structural, electronic and charge transport properties of benzothiazole-and indole-based squaraine sensitizers. Int.
J. Electrochem. Sci. 10 (2015) 1822–1832.
2
2
6. R. M. El-Shishtawy, Functional dyes, and some hi-tech applications. Int. J. Photoenergy. 2009 (2009)21.
7. R. M. El-Shishtawy, S. A. Elroby, A. M. Asiri & K. Müllen, Optical absorption spectra and electronic properties
of symmetric and asymmetric squaraine dyes for use in dssc solar cells: DFT and TD-DFT studies. Int. J. Mol.
Sci. 17 (2016) 487.
2
8. N. K. Ibrayev, E. V. Seliverstova, A. A. Ishchenko & M. A. Kudinova, The effect of sulfonate groups on spectral-
luminescent and photovoltaic properties of squarylium dyes. J. Photochem. Photobiol., A. 346 (2017) 570–575.