research papers
Table 3
Geometries of hydrogen bonds (A, ).
to the well known limitations arising from the overlap of
reflections, particularly at higher diffraction angles.
ꢁ
˚
D—Hꢅ ꢅ ꢅA D—H Hꢅ ꢅ ꢅA
Dꢅ ꢅ ꢅA
D—Hꢅ ꢅ ꢅ A
Hydrogen bonds for both compounds are summarized in
Table 3. In the ꢀ-lactam (I), a supramolecular bidimensional
structure is recognized, as shown in Fig. 3. Extended chains
constructed with strong O2—H5ꢅ ꢅ ꢅO1 hydrogen bonds run
parallel to [010]. Additional N1—H4ꢅ ꢅ ꢅO3 hydrogen bonds
link neighboring chains laterally forming ribbons also running
parallel to [010]. As observed in previous studies (Mora et al.,
2005), the four hydrogen-bond acceptor capacity of the
carboxylic acid is completed by means of two weak C2—
H2ꢅ ꢅ ꢅO3 and C2—H3ꢅ ꢅ ꢅO1 hydrogen bonds. Hydrogen
bonding in the 3-azetidinecarboxylic acid (II) is markedly
different because of its zwitterionic characters, which makes
the amine group in the ring a double donor of H atoms. In fact,
a two-dimensional network of hydrogen bonds is assembled by
the combination of two motifs: infinite two-membered zigzag
chains connected by N1—H6ꢅ ꢅ ꢅO1 hydrogen bonds running
along b, and infinite one-membered chains running along [101]
connected by a bifurcated hydrogen bond N1—H7ꢅ ꢅ ꢅO1 and
N1—H7ꢅ ꢅ ꢅO2. A perspective view of this hydrogen-bond
network is shown in Fig. 4. In addition, some weak C—Hꢅ ꢅ ꢅO
hydrogen bonds are also present, which saturates the acceptor
capacity of the carboxylate group.
(S)-4-(ꢀ)-Oxo-2-azetidinecarboxylic acid (I)
N1—H4ꢅ ꢅ ꢅO3i
O2—H5ꢅ ꢅ ꢅO1ii
C2—H2ꢅ ꢅ ꢅO3iii
C2—H3ꢅ ꢅ ꢅO1iv
1.05 (2)
0.97 (4)
1.10 (2)
1.17 (2)
2.13 (2)
1.75 (4)
2.55 (2)
2.34 (2)
2.933 (4)
2.573 (3)
3.320 (4)
3.351 (4)
132 (1)
141 (3)
127 (1)
143 (1)
3-Azetidinnecarboxylic acid (II)
N1—H6ꢅ ꢅ ꢅO1v
N1—H7ꢅ ꢅ ꢅO1vi
N1—H7ꢅ ꢅ ꢅO2vi
C1—H1ꢅ ꢅ ꢅO2vii
C2—H2ꢅ ꢅ ꢅO2viii
C3—H5ꢅ ꢅ ꢅO1ix
1.0 (2)
1.59 (2)
2.58 (3)
1.69 (3)
2.28 (2)
2.46 (3)
2.39 (2)
2.671 (4)
3.262 (4)
2.718 (5)
3.259 (2)
3.475 (6)
3.440 (6)
178 (3)
123 (2)
175 (1)
155 (3)
168.5 (9)
166 (1)
1.03 (3)
1.03 (3)
1.05 (2)
1.03 (3)
1.08 (3)
1
1
1
2
Symmetry codes: (i) 1 ꢀ x; ꢀ þ y; ꢀ þ z; (ii) x; 1 þ y; z; (iii) þ x; 12 ꢀ y; ꢀz; (iv)
2
2
1 ꢀ x; 12 þ y; 12 ꢀ z;
(v)
1 ꢀ x; 12 þ y; 1 ꢀ z;
(vi)
ꢀ1 þ x; y; ꢀ1 þ z;
(vii)
1
2
1 ꢀ x; ꢀ þ y; 2 ꢀ z; (viii) x; y; ꢀ1 þ z; (ix) ꢀ1 þ x; y; z.
We thank the ESRF for providing synchrotron radiation
beam-time, FONACIT–Venezuela and CDCHT-ULA (Grants
C-990-99-08-AA and C1246-04-08A).
References
Accelrys Inc. (2001). MATERIALS STUDIO. Accelrys Inc., 6985
Scranton Road, San Diego, CA 92121–3752, USA.
Allen, F. H. (2002). Acta Cryst. B58, 380–388.
´
´
Alonso, E., Lopez-Ortiz, F., del Pozo, C., Peralta, E., Macıas, A. &
´
Gonzalez, J. (2001). J. Org. Chem. 66, 6333–6338.
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano,
G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori,
G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.
Berman, H. M., McGandy, E. L., Burgner, J. W. & VanEtten, R. L.
(1969). J. Am. Chem. Soc. 91, 6177–6182.
Figure 4
Projection down [001] for 3-azetidinnecarboxylic acid (II) showing the
hydrogen-bonding scheme.
¨
Boultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987–993.
ꢀ134, C3—C1—C4—O2 ꢀ39.8 and C2—C1—C4—O1
ꢀ52.4ꢁ.
Finger, L. W., Cox, L. W. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27,
892–900.
Fitch, A. N. (2004). Res. Natl. Inst. Stand. Technol. 109, 133–142.
Frisch, M. J. et al. (1995). GAUSSIAN. Gaussian Inc., Pittsburgh, PA,
USA.
Fritz, H., Sutter, P. &. Weis, C. D. (1986). J. Org. Chem. 51, 558–561.
Hanessian, S., Bernstein, N., Yang, R.-Y. & Maguire, R. (1999).
Bioorg. Med. Chem. Lett. 9, 1437–1442.
Huszthy, P., Bradshaw, J. S., Krakowiak, K. E.,Wang, T. & Dalley,
N. K. (1993). J. Heterocycl. Chem. 30, 1197–1207.
Larson, A. C. & Von Dreele, R. B. (2001). GSAS. Los Alamos
National Laboratory, Los Alamos, New Mexico, USA.
LeBail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23,
447–452.
The slightly slacker constraints applied to the geometry of
the 4-atom rings allowed them to reach the geometry that best
fitted the diffraction data. In this regard, both compounds
displayed the same asymmetry pattern shown by the theore-
tically calculated molecules. However, a closer analysis of the
theoretical and X-ray diffraction distances of Table 2 show
˚
that for the ꢀ-lactam (I) there is an elongation of ca 0.03 A of
the C1—N1 and C1—C2 distances nearer to the pendant
carboxylic acid group at C1, which also shows a C1—C4
˚
distance longer than that calculated by 0.036 A. This could be
´
Lopez-Carrasquero, F., Aleman, C. & Mun˜oz-Guerra, S. (1995).
Biopolymers, 36, 263–271.
associated with the librational thermal motion of the molecule.
In the case of (II) this elongation is only observed in the C1—
C4 bond of the carboxylate group pending group. This thermal
motion cannot be modeled from powder diffraction data due
´
Lopez-Carrasquero, F., Garcıa-Alvarez, M. & Mun˜oz-Guerra, S.
´ ´
(1994). Polymer, 35, 4502–4510.
Ma, J. F. & Nomoto, K. (1996). Physiol. Plant, 97, 609–617.
ꢂ
´
610 Asiloe J. Mora et al.
Powder synchrotron diffraction data
Acta Cryst. (2006). B62, 606–611