LETTER
Synthesis of Thiophene-Based Building Blocks via Facile -Monoiodination
635
evaporation using an oil pump. Residual succinimide and
bisiodo terthiophene were removed on a short silicagel
column (Et2O-hexane 1:1). Yield: 2.6 g (76%); mp: 142-
143 °C (lit. 138-139 °C);7 1H NMR (300 MHz, d6-acetone):
7.06 (d, J 3.8 Hz, 1H), 7.12 (dd, 3J 4.9 Hz, 4J 1.4 Hz, 1H), 7.24
(d+d, J 3.8 Hz, J 3.8 Hz, 2H), 7.34 (d+dd, J 3.6 Hz, 3J 3.6 Hz,
4J 1.1 Hz, 2H), 7.48 (dd, 3J 4.9 Hz, 4J 1.1 Hz, 1H); 13C NMR
(75 MHz, CDCl3): 72.0, 124.0, 124.4, 124.8, 125.1, 128.0,
135.0, 136.8, 136.9, 137.8, 143.1; LRMS, calcd. (C12H7IS3):
374.27. Found: 374.0; GC: 99% purity
(13) 2-(4-(thiophen-2’-yl)-phenyl)-5-iodo-thiophene (2a): 217
(0.50 g, 2.10 mmol) and NIS (0.54 g, 2.40 mmol) in CHCl3 (12
ml) and AcOH (7 ml) was treated as above. Purification on
short silicagel column, (1. hexane, 2. EtOAc-hexane 1:1).
Yield: 0.32 g (42%); mp: 198 °C (dec); 1H NMR (300 MHz,
CDCl3): 7.02 (d, J 3.9 Hz, 1H), 7.12 (dd, 3J 5.2 Hz, 4J 1.6
Hz, 1H), 7.25 (d, J 3.9 Hz, 1H), 7.33 (dd, 3J 4.9 Hz, 4J 1.1 Hz,
1H), 7.36 (dd, 3J 3.6 Hz, 4J 1.1 Hz, 1H), 7.53-7.56 (m, 2H),
7.63-7.65 (m, 2H); 13C NMR (75 MHz, CDCl3): 72.5, 123.3,
124.6, 125.2, 126.2-126.4, 128.2, 132.6, 134.0, 138.1, 143.8,
150.0; LRMS calcd. (C14 H9 I S2): 368.25. Found: 368.0; GC:
97% purity; 4-(5-iodo-thiophen-2-yl)-7-(thiophen-2’-yl)-
benzo[2.1.3]thiadiazole (3a):
317(0.50 g, 1.70 mmol) and NIS (0.50 g, 2.2 mmol) in CHCl3
(10 ml) and AcOH (5 ml) was treated as above. Purification on
short silicagel column (Et2O-hexane 1:1). Yield: 0.67 g
(92%); mp: 124-126 °C; 1H NMR (300 MHz, CDCl3): 7.24
(dd, 3J 3.6 Hz, 4J 1.4 Hz, 1H), 7.37 (d, J 4.1 Hz, 1H), 7.49 (dd,
3J 5.2 Hz, 4J 1.1 Hz, 1H), 7.73 (d, J 3.8 Hz, 1H), 7.83 (d, J 8.0
Hz, 1H), 7.89 (d, J 7.7 Hz, 1H), 8.15 (dd, 3J 3.9 Hz, 4J 1.1 Hz,
1H); 13C NMR (75 MHz, d8-THF): 82.7, 130.4, 130.7, 130.8,
131.0, 131.9, 132.8, 133.4, 133.9, 143.3, 144.9, 150.9, 157.9,
158.0; MS (MALDI-TOF), calcd. (C14H7IN2S3): 426.31
Found: 426.62; 5-Iodo-[2,2']bithiophene (4a): 4 (2.0 g, 12.0
mmol) and NIS (3.2 g, 14.4 mmol) in CHCl3 (24 ml) and
AcOH (24 ml), was stirred overnight and the reaction mixture
was filtered to remove bisiodinated bithiophene. Solvents
were removed by evaporation on oil pump. The residue was
filtered through a short silicagel column (hexane). Yield: 2.1
g (60%); 1H NMR (300 MHz, d6-acetone): 7.00 (dd, 3J 3.9
Hz, 4J 0.8 Hz, 1H), 7.09 (m, 1H), 7.26 (d, J 3.6 Hz, 1H), 7.29
(dd, 3J 3.6 Hz, 4J 0.8 Hz, 1H), 7.44 (d, J 5.2 Hz, 1H); 13C NMR
(75 MHz, CDCl3): 72.2, 124.4, 124.6, 125.0, 128.1, 136.4,
137.8, 143.5; LRMS calcd.(C8 H5 I S2): 292.15. Found: 291.9;
GC: 95% purity
Scheme 2
Acknowledgement
The University of Copenhagen is gratefully thanked for financial
support. The Authors gratefully thank Xianwen Lou for performing
MALDI-TOF analysis.
References and Notes
(1) Zhu,Y.; Millet, D. B.; Wolf, M. O.; Rettig, S. J.
Organometallics 1999, 18, 1930
(2) Higgins, S. J.; Jones, C. L.; Francis, S. M. Synth. Met. 1999,
98, 211.
(14) 5-Bromo-5’’-iodo[2.2’.5’.2’’]terthiophene (1b): 1a (0.374 g,
1.00 mmol) was dissolved in dry THF (5ml), and the mixture
cooled in an ice bath and NBS (0.178 g, 1.00 mmol) was
added in the cold. The ice bath was removed, the mixture was
shielded from light and stirred overnight at r.t. The solvent
was removed by evaporation and the residue was filtered
through a short silicagel coloumn (Et2O). Yield: 0.320 g
(70%); mp: 175-177 °C (dec); 1H NMR (500 MHz, CDCl3):
6.84 (d, J 3.4 Hz, 1H), 6.91 (d, J 3.4 Hz, 1H), 6.98-7.00 (d+br
s, J 3.9 Hz, 3H), 7.17 (d, J 3.9 Hz, 1H); 13C NMR (75 MHz,
CDCl3): 72.3, 111.4, 124.0, 124.6, 124.8, 125.3, 130.8,
135.5, 135.7, 137.8, 138.4, 142.8.; LRMS calcd.
(3) Choi, N.; Ishida, T.; Inoue, A.; Mizutani, W.; Tokumoto, H.
Appl. Surf. Sci. 1999, 144, 445.
(4) Chang, C. T.; Chang, C.; Lee, C.; Lin, F.; Tsai, J.; Ashendel,
C. L.; Thomas,T. C. K.; Geahlen, R. L.; Waters, D. J. Patent:
US 5578636 A26 1996, 30 pp.
(5) Chang, C. T.; Chen, K. M.; Liu, W. H.; Lin, F. L.; Wu, R. T.
Patent: US 5747525 A5 1998, 34 pp.
(6) Rossi, R.; Carpita, A.; Lezzi, A. Tetrahedron 1984, 40, 2773
(7) MacEachern, A.; Soucy, C.; Leitch, L. C.; Arnason, J. T.;
Morand, P. Tetrahedron 1988, 44, 2403.
(8) Curtis, R. F.; Phillips, G. T. J. Chem. Soc. 1965, 5134.
(9) Steinkopf, W. Liebigs Ann. 1923, 430, 99.
(10) For an alternative approach to monoiodinated
oligothiophenes, see: Sévignon, M.; Papillon, J.; Schulz, E.;
Lemaire, M. Tetrahedron Lett. 1999, 40, 5873.
(11) Wu, R.; Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org.
Chem 1996, 61, 6906.
(12) Monoiodination, typical procedure, 5-iodo-[2, 2’, 5’,
2’’]terthiophene (1a): 1 (2.0 g, 8.1 mmol) and NIS (2.1 g, 9.26
mmol) were dissolved in a mixture of dry CHCl3 (30 ml) and
glacial AcOH (20 ml). The mixture was shielded from light
and stirred overnight at r.t. Solvents were removed by
(C12H6BrIS3): 453.3. Found: 453.8; GC: 96% purity; 5-
Bromo-5’-iodo-[2.2’]bithiophene (4b): 4a (1.85 g, 6.34
mmol) was reacted with NBS (1.13 g, 6.34 mmol) in dry THF
(30ml) as above. Filtration through a short silicagel coloumn
(Et2O-hexane 1:1). Yield: 2.17 g (92%); mp: 148-150 °C; 1H
NMR (500 MHz, CDCl3): 6.78 (d, J 3.9 Hz, 1H), 6.86 (d, J
3.9 Hz, 1H), 6.96 (d, J 3.9 Hz, 1H), 7.15 (d, J 3.4 Hz, 1H); 13
C
NMR (75 MHz, CDCl3): 72.5, 111.7, 124.2, 124.4, 125.5,
130.7, 137.8, 142.3; LRMS calcd. (C8 H4 Br I S2): 371.14.
Found: 371.6; GC: 98% purity
Synlett 2001, No. 5, 634–636 ISSN 0936-5214 © Thieme Stuttgart · New York